Trong bài báo năm 1949 của Claude Shannon , ông đã trích dẫn những giá trị đó như là một phần của chức năng đánh giá của mình:
Hầu hết các câu châm ngôn và nguyên tắc chơi đúng là những khẳng định thực sự về việc đánh giá các vị trí, ví dụ: -
(1) Các giá trị tương đối của nữ hoàng, tân binh, giám mục, hiệp sĩ và cầm đồ lần lượt là khoảng 9, 5, 3, 3, 1. Do đó, những thứ khác bằng nhau (!) Nếu chúng ta thêm số lượng các mảnh cho hai bên với các hệ số này, thì bên có tổng lớn nhất có vị trí tốt hơn.
(2) Rooks nên được đặt trên các tệp đang mở. Đây là một phần của một nguyên tắc chung hơn rằng bên có tính cơ động cao hơn, những thứ khác bằng nhau, có trò chơi tốt hơn.
(3) Những con tốt lạc hậu, bị cô lập và nhân đôi là yếu.
(4) Một vị vua bị phơi bày là một điểm yếu (cho đến khi kết thúc trò chơi).
Những nguyên tắc này và tương tự chỉ là sự khái quát hóa từ bằng chứng thực nghiệm của nhiều trò chơi và chỉ có một loại giá trị thống kê. Có lẽ bất kỳ nguyên tắc cờ vua có thể được mâu thuẫn bởi các ví dụ truy cập cụ thể. Tuy nhiên, hình thành các nguyên tắc này người ta có thể xây dựng một hàm đánh giá thô. Sau đây là một ví dụ: -
f(P) = 200(K-K') + 9(Q-Q') + 5(R-R') + 3(B-B'+N-N') + (P-P')
- 0.5(D-D'+S-S'+I-I') + 0.1(M-M') + ...
Anh ta không trích dẫn một tài liệu tham khảo rõ ràng cho các giá trị này, nhưng dường như coi chúng là nổi tiếng. Ông đã trích dẫn ba cuốn sách rõ ràng liên quan đến cờ vua được xuất bản từ năm 1937 trở đi.
Tuy nhiên, Hệ thống của tôi của Nimzowitsch được xuất bản lần đầu tiên vào năm 1925 và không rõ ràng ngay lập tức rằng các giá trị tương đối cụ thể được gán cho các mảnh; một tìm kiếm văn bản cho "giá trị mảnh" chỉ mang lại các tham chiếu xiên cho ý tưởng rằng một rook có giá trị hơn nhiều so với một con tốt mà trước đây không nên bị ràng buộc để bảo vệ cái sau. Như đã nói, Hệ thống của tôi là một cuốn sách giáo khoa về chơi theo vị trí, vì vậy có thể nói là đã vượt ra ngoài phân tích vật liệu đơn giản.
Cũng được xuất bản lần đầu tiên vào năm 1925 là Sách hướng dẫn cờ vua của Lasker , bắt đầu từ những điều cơ bản - hình thức của ván và quy tắc di chuyển quân cờ. Ở đây, chúng tôi làm tìm một mô tả bằng số của giá trị mảnh, gần cuối của "cuốn sách đầu tiên":
Chúng tôi tập trung chú ý vào các trò chơi của [V]] có kinh nghiệm và trong số đó có những sự đều đặn nhất định thể hiện rất rõ ràng. [...] Do đó, chúng ta biết rằng ceteris tố khác không đổi (tất cả con người khác bằng) hiệp sĩ và giám mục là chẵn, hoặc là ceteris tố khác không đổi giá trị ba cầm cố, rook ceteris tố khác không đổi mạnh mẽ như hiệp sĩ hay giám mục và hai con cờ, nữ hoàng rất gần mạnh như hai rooks hoặc ba mảnh nhỏ.
Từ văn xuôi này, chúng ta có thể trích xuất B = N = 3, R = 5, Q nhỏ hơn 10 (2xR) hoặc 9 (3xB / N).
Sau đó, ông tiếp tục chỉ ra một số tình huống trong đó trình độ ceteris paribus đủ điều kiện chắc chắn là không đúng sự thật. Nhưng một lần nữa, không rõ ràng ngay từ văn bản cho dù Lasker là người đầu tiên viết rõ ràng các giá trị này, hoặc liệu chính anh ta đã học được chúng từ nơi khác.
Một câu trả lời tiếp theo lưu ý rằng Staunton đã xuất bản một bộ giá trị tương tự vào năm 1847, nhưng về cơ bản trích dẫn Q = 10 thay vì giá trị của Shannon là 9; lần lượt những giá trị này dường như đã được thiết lập sớm hơn. Vì vậy, chúng ta có thể thấy rằng Lasker có thể đã đạt được những giá trị quân cờ này từ Staunton (một nhân vật rất có ảnh hưởng trong cờ vua, vì vậy Lasker chắc chắn đã đọc anh ta) và, trước khi viết cuốn sổ tay cờ vua của chính mình ba phần tư thế kỷ sau, đã sửa đổi chúng dựa trên kinh nghiệm của chính mình.
Dường như Lasker đã sửa đổi các giá trị của chính mình một lần nữa cho tác phẩm sau đó vào năm 1947, thành các giá trị hơi khác so với của Shannon: B = N = 3.5, R = 5, Q = 8.5.
Điều đáng chú ý là các động cơ cờ vua hiện đại đôi khi chọn một bộ giá trị khác hoàn toàn, đặc biệt là khi chúng được tự tối ưu hóa. Stockfish sử dụng N = 4,16, B = 4,41, R = 6,625, Q = 12,92, tương ứng với việc phá giá một con tốt hơn bất kỳ thứ gì khác. Tuy nhiên, các giá trị "tiêu chuẩn" dường như vẫn ổn định một cách hợp lý cho đến cuối thế kỷ 19 và hầu hết các ngày 20.