(-a) × (-a) = a × a


121

Chúng ta đều biết rằng (hy vọng), nhưng bạn có thể chứng minh điều đó không?(a)×(a)=a×a

Nhiệm vụ của bạn là chứng minh thực tế này bằng cách sử dụng các tiên đề vòng. Các tiên đề vòng là gì? Các tiên đề vòng là một danh sách các quy tắc mà hai thao tác nhị phân trên một tập hợp phải tuân theo. Hai thao tác là phép cộng, và phép nhân, . Đối với thử thách này, đây là các tiên đề vòng trong đó và là các phép toán nhị phân đóng trên một số tập , là một phép toán đơn nguyên đóng trên và , , là thành viên của :+×+×SSabcS

  1. a+(b+c)=(a+b)+c

  2. a+0=a

  3. a+(a)=0

  4. a+b=b+a *

  5. a×(b×c)=(a×b)×c

  6. a×1=a

  7. 1×a=a

  8. a×(b+c)=(a×b)+(a×c)

  9. (b+c)×a=(b×a)+(c×a)

Bằng chứng của bạn phải là một chuỗi các đẳng thức, mỗi ứng dụng là một tiên đề.

Bạn có thể áp dụng các tiên đề cho toàn bộ biểu thức hoặc cho một số biểu thức phụ. Ví dụ: nếu chúng ta có chúng ta có thể áp dụng Axiom 4 cho chỉ thuật ngữ , thuật ngữ hoặc toàn bộ biểu thức. Các biến cũng có thể thay thế cho các biểu thức phức tạp tùy ý, ví dụ, chúng ta có thể áp dụng tiên đề 4 cho để lấy . Trong mỗi bước của bằng chứng, bạn chỉ có thể áp dụng một tiên đề cho một biểu thức. Tất cả các tiên đề là hai chiều, có nghĩa là sự thay thế có thể đi theo một trong hai hướng. Những thứ như sau không được phép(a+c)+(b+c)(b+c)(a+c)((a×c)+b)+((a)+1)((a)+1)+((a×c)+b)

(a + b) + (c + d) = (a + (b + c)) + d Ax. 1

Điều này nên được thực hiện trong hai bước:

(a + b) + (c + d) = ((a + b) + c) + d Ax. 1
                  = (a + (b + c)) + d Ax. 1

Các sự kiện bạn thường có thể được chấp nhận nhưng không được liệt kê trong danh sách tiên đề có thể được giả sử , ví dụ là đúng nhưng yêu cầu nhiều bước để tạo khuôn.(a)=(1)×a

Người dùng Anthony đã vui lòng cung cấp trình xác nhận bằng chứng trực tuyến có thể được sử dụng để thay thế cho TIO.

Ví dụ bằng chứng

Dưới đây là một ví dụ chứng minh rằng với các tiên đề được sử dụng được dán nhãn ở bên phải của mỗi bước.(a)=a

 -(-a) = (-(-a)) + 0          Ax. 2
       = 0 + (-(-a))          Ax. 4
       = (a + (-a)) + (-(-a)) Ax. 3
       = a + ((-a) + (-(-a))) Ax. 1
       = a + 0                Ax. 3
       = a                    Ax. 2

Hãy thử trực tuyến!

Bạn sẽ được giao nhiệm vụ chứng minh sử dụng thay thế liên tiếp như hiển thị ở trên.(a)×(a)=a×a

Chấm điểm

Đây là vì vậy câu trả lời của bạn sẽ được ghi theo số bước cần thực hiện để đi từ đến , với điểm thấp hơn sẽ tốt hơn.(a)×(a)a×a

Bổ đề

Một số câu trả lời đã chọn sử dụng Bổ đề trong bằng chứng của họ, vì vậy tôi sẽ mô tả cách ghi điểm đó để tránh mọi nhầm lẫn. Đối với người không quen biết, bổ đề là bằng chứng về sự thật mà bạn sử dụng sau này trong bằng chứng. Trong toán học thực sự, chúng có thể hữu ích trong việc sắp xếp suy nghĩ của bạn hoặc truyền đạt thông tin rõ ràng đến người đọc. Trong thử thách này, việc sử dụng bổ đề sẽ không ảnh hưởng trực tiếp đến điểm số của bạn. (Mặc dù tổ chức bằng chứng có thể làm cho nó dễ hơn hoặc khó hơn để chơi gôn)

Nếu bạn chọn sử dụng bổ đề, sẽ mất rất nhiều bước để chứng minh bổ đề đó ở nơi đầu tiên mỗi khi bạn sử dụng nó. Ví dụ, đây là bảng phân tích điểm của một bằng chứng sử dụng bổ đề.

Lemma:
a × 0 = 0

Proof (7 steps):
a × 0 = (a × 0) + 0                        Ax. 2 (1)
      = (a × 0) + ((a × b) + (-(a × b)))   Ax. 3 (1)
      = ((a × 0) + (a × b)) + (-(a × b))   Ax. 1 (1)
      = (a × (0 + b)) + (-(a × b))         Ax. 8 (1)
      = (a × (b + 0)) + (-(a × b))         Ax. 4 (1)
      = (a × b) + (-(a × b))               Ax. 2 (1)
      = 0                                  Ax. 3 (1)

Theorem:
(a × 0) + (b × 0) = 0

Proof (15 steps):
(a × 0) + (b × 0) = 0 + (b × 0)  Lemma (7)
                  = (b × 0) + 0  Ax. 4 (1)
                  = b × 0        Ax. 2 (1)
                  = 0            Lemma (7)

*: Nó đã được chỉ ra rằng tiên đề này không thực sự cần thiết để chứng minh tài sản này, tuy nhiên bạn vẫn được phép sử dụng nó.

: Vì không xuất hiện trong đẳng thức mong muốn nên bất kỳ bằng chứng nào sử dụng các tiên đề này đều không phải là tối thiểu. Đó là những tiên đề không thể giúp chứng minh thực tế mong muốn. Chúng đã được đưa vào chỉ vì mục đích hoàn chỉnh.1


8
Là một chương trình chúng tôi viết có nghĩa là để giải quyết điều này, hoặc chỉ in câu trả lời?
Tahg

8
@Tahg Bạn phải chứng minh điều đó và gửi bằng chứng của mình làm câu trả lời. Điều này khác với hầu hết các vấn đề (nếu không phải tất cả) bạn sẽ thấy ở đây.
HyperNeutrino

8
Tôi đã rất gần gũi trước khi tôi nhận ra rằng * 0 = 0 không có trong danh sách các tiên đề.
Sparr

8
Erm ... tôi có thể sai nhưng không phải cách này lạc đề? Không nên trả lời có chứa mã?
hoàn toàn là

35
@icrieverytim nếu nó giúp, hãy nghĩ về danh sách tiên đề như một ngôn ngữ lập trình với chín hàm thay thế tham số tích hợp và đây là một mã golf cho một hàm biến đầu vào cụ thể thành đầu ra cụ thể.
Sparr

Câu trả lời:


47

18 bước

(-a)*(-a) = ((-a)*(-a))+0                                             Axiom 2
          = ((-a)*(-a))+(((a*a)+(a*(-a)))+(-((a*a)+(a*(-a)))))        Axiom 3
          = (((-a)*(-a))+((a*a)+(a*(-a))))+(-((a*a)+(a*(-a))))        Axiom 1
          = (((a*a)+(a*(-a)))+((-a)*(-a)))+(-((a*a)+(a*(-a))))        Axiom 4
          = ((a*a)+((a*(-a))+((-a)*(-a))))+(-((a*a)+(a*(-a))))        Axiom 1
          = ((a*a)+((a+(-a))*(-a)))+(-((a*a)+(a*(-a))))               Axiom 9
          = ((a*a)+(0*(-a)))+(-((a*a)+(a*(-a))))                      Axiom 3
          = ((a*(a+0))+(0*(-a)))+(-((a*a)+(a*(-a))))                  Axiom 2
          = ((a*(a+(a+(-a))))+(0*(-a)))+(-((a*a)+(a*(-a))))           Axiom 3
          = (((a*a)+(a*(a+(-a))))+(0*(-a)))+(-((a*a)+(a*(-a))))       Axiom 8
          = ((a*a)+((a*(a+(-a)))+(0*(-a))))+(-((a*a)+(a*(-a))))       Axiom 1
          = (a*a)+(((a*(a+(-a)))+(0*(-a)))+(-((a*a)+(a*(-a)))))       Axiom 1
          = (a*a)+((((a*a)+(a*(-a)))+(0*(-a)))+(-((a*a)+(a*(-a)))))   Axiom 8
          = (a*a)+(((a*a)+((a*(-a))+(0*(-a))))+(-((a*a)+(a*(-a)))))   Axiom 1
          = (a*a)+(((a*a)+((a+0)*(-a)))+(-((a*a)+(a*(-a)))))          Axiom 9
          = (a*a)+(((a*a)+(a*(-a)))+(-((a*a)+(a*(-a)))))              Axiom 2
          = (a*a)+0                                                   Axiom 3
          = a*a                                                       Axiom 2

Tôi đã viết một chương trình để kiểm tra giải pháp của tôi. Vì vậy, nếu bạn tìm thấy một lỗi trong này, thì chương trình của tôi cũng sai.


@Etoplay Chỉ vì tò mò, bạn đã viết chương trình của mình trong Prolog chưa?
Jalil Compaoré

23
Sẽ thật tuyệt nếu bạn có thể bao gồm chương trình của bạn. Nó chắc chắn có thể giúp xác minh các giải pháp khác.
Sriotchilism O'Z cổ

2
Làm thế nào bạn có được từ dòng đầu tiên đến dòng thứ hai chỉ bằng cách áp dụng một tiên đề một lần?
SztupY

4
@SztupY Axiom 3 được v + (-v) = 0cho phép v = ((a*a)+(a*(-a))và bạn đến đó trong 1 bước.
MT0


29

18 bước

Khác với giải pháp 18 bước đã được đăng.

a*a = a*a + 0                                                 A2
    = a*a + ((a*(-a) + a*(-a)) + (-(a*(-a) + a*(-a))))        A3
    = (a*a + (a*(-a) + a*(-a))) + (-(a*(-a) + a*(-a)))        A1
    = (a*a + a*((-a) + (-a))) + (-(a*(-a) + a*(-a)))          A8
    = a*(a + ((-a) + (-a))) + (-(a*(-a) + a*(-a)))            A8
    = a*((a + (-a)) + (-a)) + (-(a*(-a) + a*(-a)))            A1
    = a*(0 + (-a)) + (-(a*(-a) + a*(-a)))                     A3
    = a*((-a) + 0) + (-(a*(-a) + a*(-a)))                     A4
    = a*(-a) + (-(a*(-a) + a*(-a)))                           A2
    = (a + 0)*(-a) + (-(a*(-a) + a*(-a)))                     A2
    = (a + (a + (-a)))*(-a) + (-(a*(-a) + a*(-a)))            A3
    = ((a + a) + (-a))*(-a) + (-(a*(-a) + a*(-a)))            A1
    = ((-a) + (a + a))*(-a) + (-(a*(-a) + a*(-a)))            A4
    = ((-a)*(-a) + (a + a)*(-a)) + (-(a*(-a) + a*(-a)))       A9
    = ((-a)*(-a) + (a*(-a) + a*(-a))) + (-(a*(-a) + a*(-a)))  A9
    = (-a)*(-a) + ((a*(-a) + a*(-a)) + (-(a*(-a) + a*(-a))))  A1
    = (-a)*(-a) + 0                                           A3
    = (-a)*(-a)                                               A2

Thật thú vị khi thấy ai đó làm điều đó ngược lại. Tất cả các bước đều có thể đảo ngược nên đây là một bằng chứng tốt.
Sriotchilism O'Z cổ

Rằng nó đi ngược lại chủ yếu là tình cờ. Bằng chứng thực sự khá đối xứng: Tôi sử dụng hai chuỗi các bước tương tự nhau để đi từ đầu đến cuối kỳ a*(-a) + stuff.
Emil Jeřábek


28

29 26 bước

Không có bổ đề!

Bình luận nếu bạn thấy bất cứ điều gì sai. (Rất dễ mắc lỗi)

(-a) × (-a) = ((-a) + 0) × (-a)                                                  Ax. 2
            = ((-a) + (a + (-a))) × (-a)                                         Ax. 3
            = ((a + (-a)) + (-a)) × (-a)                                         Ax. 4
            = (a + ((-a) + (-a))) × (-a)                                         Ax. 1
            = (a × (-a)) + (((-a) + (-a)) × (-a))                                Ax. 9
            = (a × ((-a) + 0)) + (((-a) + (-a)) × (-a))                          Ax. 2
            = (a × ((-a) + (a + (-a)))) + (((-a) + (-a)) × (-a))                 Ax. 3
            = (a × ((a + (-a)) + (-a))) + (((-a) + (-a)) × (-a))                 Ax. 4
            = (a × (a + ((-a) + (-a)))) + (((-a) + (-a)) × (-a))                 Ax. 1
            = ((a × a) + (a × ((-a) + (-a)))) + (((-a) + (-a)) × (-a))           Ax. 8
            = (a × a) + ((a × ((-a) + (-a))) + (((-a) + (-a)) × (-a)))           Ax. 1
            = (a × a) + (((a × (-a)) + (a × (-a))) + (((-a) + (-a)) × (-a)))     Ax. 8
            = (a × a) + (((a + a) × (-a)) + (((-a) + (-a)) × (-a)))              Ax. 9
            = (a × a) + (((a + a) + ((-a) + (-a))) × (-a))                       Ax. 9
            = (a × a) + ((((a + a) + (-a)) + (-a)) × (-a))                       Ax. 1
            = (a × a) + (((a + (a + (-a))) + (-a)) × (-a))                       Ax. 1
            = (a × a) + (((a + 0) + (-a)) × (-a))                                Ax. 3
            = (a × a) + ((a + (-a)) × (-a))                                      Ax. 2
            = (a × a) + (0 × (-a))                                               Ax. 3
            = (a × a) + ((0 × (-a)) + 0)                                         Ax. 2
            = (a × a) + ((0 × (-a)) + ((0 × (-a)) + (-(0 × (-a)))))              Ax. 3
            = (a × a) + (((0 × (-a)) + (0 × (-a))) + (-(0 × (-a))))              Ax. 1
            = (a × a) + (((0 + 0) × (-a)) + (-(0 × (-a))))                       Ax. 9
            = (a × a) + ((0 × (-a)) + (-(0 × (-a))))                             Ax. 2
            = (a × a) + 0                                                        Ax. 3
            = (a × a)                                                            Ax. 2

Tín dụng vào Maltysen với giá 0 × (-a) = 0



14

18 bước

Không phải là bằng chứng 18 bước đầu tiên, nhưng nó đơn giản hơn các bằng chứng khác.

(-a)*(-a)
= (-a)*(-a) + 0                             [Axiom 2]
= (-a)*(-a) + ((-a)*a + -((-a)*a))          [Axiom 3]
= ((-a)*(-a) + (-a)*a) + -((-a)*a)          [Axiom 1]
= ((-a)*(-a) + ((-a) + 0)*a) + -((-a)*a)    [Axiom 2]
= ((-a)*(-a) + ((-a)*a + 0*a)) + -((-a)*a)  [Axiom 9]
= (((-a)*(-a) + (-a)*a) + 0*a) + -((-a)*a)  [Axiom 1]
= ((-a)*((-a) + a) + 0*a) + -((-a)*a)       [Axiom 8]
= ((-a)*(a + (-a)) + 0*a) + -((-a)*a)       [Axiom 4]
= ((-a)*0 + 0*a) + -((-a)*a)                [Axiom 3]
= (0*a + (-a)*0) + -((-a)*a)                [Axiom 4]
= ((a + (-a))*a + (-a)*0) + -((-a)*a)       [Axiom 3]
= ((a*a + (-a)*a) + (-a)*0) + -((-a)*a)     [Axiom 9]
= (a*a + ((-a)*a + (-a)*0)) + -((-a)*a)     [Axiom 1]
= (a*a + (-a)*(a + 0)) + -((-a)*a)          [Axiom 8]
= (a*a + (-a)*a) + -((-a)*a)                [Axiom 2]
= a*a + ((-a)*a + -((-a)*a))                [Axiom 1]
= a*a + 0                                   [Axiom 3]
= a*a                                       [Axiom 2]

Xác thực


9
A2: (-a) x (-a) = ((-a) + 0) x (-a)
A3:             = ((-a) + (a + (-a))) x (-a)
A9:             = ((-a) x (-a)) + ((a + (-a)) x (-a))
A4:             = ((-a) x (-a)) + (((-a) + a) x (-a))
A9:             = ((-a) x (-a)) + (((-a) x (-a)) + (a x (-a)))
A1:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x (-a))
A2:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x ((-a) + 0))
A3:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x ((-a) + (a + (-a))))
A8:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + (a x (a + (-a))))
A8:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + ((a x a) + (a x (-a))))
A4:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + ((a x (-a)) + (a x a)))
A1:             = (((-a) x (-a)) + ((-a) x (-a))) + (((a x (-a)) + (a x (-a))) + (a x a))
A8:             = ((-a) x ((-a) + (-a))) + (((a x (-a)) + (a x (-a))) + (a x a))
A8:             = ((-a) x ((-a) + (-a))) + ((a x ((-a) + (-a))) + (a x a))
A1:             = (((-a) x ((-a) + (-a))) + (a x ((-a) + (-a)))) + (a x a)
A9:             = (((-a) + a) x ((-a) + (-a))) + (a x a)
A4:             = ((a + (-a)) x ((-a) + (-a))) + (a x a)
Lemma:          = (0 x ((-a) + (-a))) + (a x a)
A3:             = 0 + (a x a)
A4:             = (a x a) + 0
A2:             = (a x a)

Lemma: 0 = 0 x a

A3: 0 = (0 x a) + (-(0 x a))
A2:   = ((0 + 0) x a) + (-(0 x a))
A9:   = ((0 x a) + (0 x a)) + (-(0 x a))
A1:   = (0 x a) + ((0 x a) + (-(0 x a)))
A3:   = (0 x a) + 0
A2:   = (0 x a)

27 26 bước Cảm ơn bạn Funky Computer Man đã nhận thấy một dòng trùng lặp.


1
Chào mừng đến với trang web! Tôi không chắc tại sao bạn tạo ra một bổ đề chỉ để sử dụng nó một lần nhưng tôi cho rằng nó không trái với quy tắc.
Sriotchilism O'Z cổ

@FunkyComputerMan Cảm ơn bạn! Bạn đúng; Tôi không chắc mình đã nghĩ gì khi viết bổ đề đó ^^. Và cảm ơn bạn đã chỉnh sửa và nhận xét của bạn.
Jalil Compaoré

1
@ JalilCompaoré Tôi nghĩ rằng bạn có thể lưu lần cuối A3bằng cách bắt đầu bằng cách áp dụng A2cho lần thứ hai (-a) thay vì lần đầu tiên. Mặc dù vậy, tôi không chắc lắm, vì tôi không có thời gian để xử lý nó ngay bây giờ.
H.PWiz

7

6 + 7 + 7 + 6 + 3 = 29 bước

Tôi thực sự hy vọng tôi đã không làm hỏng bất cứ điều gì, để lại nhận xét nếu bạn nghĩ rằng tôi đã làm.

Lemma 1. a*0=0 (6 steps)

0 = a*0 + -(a*0)  axiom 3
= a*(0+0) + -(a*0) axiom 2
= (a*0 + a*0) + -(a*0) axiom 8
= a*0 + (a*0 + -(a*0)) axiom 1
= a*0 + 0 axiom 3
= a*0 axiom 2

Lemma 2. a*(-b) = -(a*b) (7 steps)

a*(-b) = a*(-b) + 0 axiom 2
= a*(-b) + (a*b + -(a*b)) axiom 3
= (a*(-b) + a*b) + -(a*b) axiom 1
= a*(-b+b) + -(a*b) axiom 8
= a*0 + -(a*b) axiom 3
= 0 + -(a*b) lemma 1
= -(a*b) axiom 2

Lemma 3. (-a)*b = -(a*b) (7 steps)
    same as above

Lemma 4. -(-(a)) = a (6 steps)

 -(-a) = (-(-a)) + 0    axiom 2
 = 0 + (-(-a))          axiom 4
 = (a + (-a)) + (-(-a)) axiom 3
 = a + ((-a) + (-(-a))) axiom 1
 = a + 0                axiom 3
 = a                    axiom 2

Theorem. -a*-a=0 (3 steps)

-a*-a = -(a*(-a)) lemma 3
= -(-(a*a)) lemma 2
= a*a lemma 4

Q.E.D.

3
Tôi không nghĩ rằng bạn có thể làm bổ đề mặc dù
HyperNeutrino

11
"Định lý. -A * -a = 0" nên = a * a?
Sparr

2
@ H.PWiz Tôi không gặp vấn đề gì với những người sử dụng chanh, nhưng chúng có giá bao nhiêu bước mỗi khi chúng được sử dụng. Tôi khuyên bạn không nên sử dụng chúng vì chúng có thể theo cách tối ưu hóa, nhưng theo tôi thấy bài viết này vẫn ổn.
Sriotchilism O'Z cổ

4
đi từ "0 + - (a * b)" đến "- (a * b)" trong một ứng dụng tiên đề 2 là không đúng. bạn cần sử dụng tiên đề 4 để hoán đổi các cạnh của + trước.
Sparr

2
Cách tôi đọc nó là bổ đề 2/3 là 6 bước cộng với một ví dụ của bổ đề 1 trong 12 bước, bổ đề 4 là 6 bước, tổng cộng 30 bước. Am i thiếu cái gì ở đây?
Tahg

6

23 bước

(-a) * (-a) = ((-a) * (-a)) + 0                                 ✔ axiom 2
            = ((-a) * (-a)) + (((-a) * a) + -((-a) * a))        ✔ axiom 3
            = (((-a) * (-a)) + (-a) * a) + -((-a) * a)          ✔ axiom 1
            = (-a) * (-a + a) + -((-a) * a)                     ✔ axiom 8
            = (-a) * (a + (-a)) + -((-a) * a)                   ✔ axiom 4
            = ((-a) * 0) + -((-a) * a)                          ✔ axiom 3
            = (((-a) * 0) + 0) + -((-a) * a)                    ✔ axiom 2
            = ((-a) * 0 + ((-a)*0 + -((-a)*0))) + -((-a) * a)   ✔ axiom 3
            = (((-a) * 0 + (-a)*0) + -((-a)*0)) + -((-a) * a)   ✔ axiom 1
            = ((-a) * (0 + 0) + -((-a)*0)) + -((-a) * a)        ✔ axiom 8
            = ((-a) * 0 + -((-a)*0)) + -((-a) * a)              ✔ axiom 2
            = 0 + -((-a) * a)                                   ✔ axiom 3
            = (0* a) + -(0*a) + -((-a) * a)                     ✔ axiom 3
            = ((0+0)* a) + -(0*a) + -((-a) * a)                 ✔ axiom 2
            = ((0 * a ) + (0*a) + -(0*a)) + -((-a) * a)         ✔ axiom 9
            = ((0 * a ) + ((0*a) + -(0*a))) + -((-a) * a)       ✔ axiom 1
            = ((0 * a ) + 0) + -((-a) * a)                      ✔ axiom 3
            = (0 * a ) + -((-a) * a)                            ✔ axiom 2
            = ((a + -a) * a ) + -((-a) * a)                     ✔ axiom 3
            = ((a * a) + (-a) * a) + -((-a) * a)                ✔ axiom 9
            = (a * a) + (((-a) * a) + -((-a) * a))              ✔ axiom 1
            = (a * a) + 0                                       ✔ axiom 3
            = a * a                                             ✔ axiom 2

Hãy thử trực tuyến!

Có bạn đọc đúng, tôi đã viết một trình kiểm tra bằng chứng cho câu đố này (tự nhiên có khả năng chính người kiểm tra đã sai)


5

34 bước

Lemma 1: 0=0*a (8 steps)
    0
A3: a*0 + -(a*0)
A4: -(a*0) + a*0
A2: -(a*0) + a*(0+0)
A8: -(a*0) + (a*0 + a*0)
A1: (-(a*0) + a*0) + a*0
A3: 0 + a*0
A4: a*0 + 0
A2: a*0

Theorem: -a*-a = a*a (49 steps)

    -a * -a
A2: (-a+0) * -a
A2: (-a+0) * (-a+0)
A3: (-a+(a+-a)) * (-a+0)
A3: (-a+(a+-a)) * (-a+(a+-a))
A8: -a*(-a+(a+-a)) + (a+-a)*(-a+(a+-a))
A8: -a*(-a+(a+-a)) + -a*(-a+(a+-a)) + a*(-a+(a+-a))
A3: -a*(-a+0)      + -a*(-a+(a+-a)) + a*(-a+(a+-a))
A3: -a*(-a+0)      + -a*(-a+0)      + a*(-a+(a+-a))
A8: -a*(-a+0)      + -a*(-a+0)      + a*-a + a*(a+-a)
A8: -a*(-a+0)      + -a*(-a+0)      + a*-a + a*a + a*-a
A2: -a*-a          + -a*(-a+0)      + a*-a + a*a + a*-a
A2: -a*-a          + -a*-a          + a*-a + a*a + a*-a
A8: -a*-a          + (-a+a)*-a             + a*a + a*-a
A3: -a*-a          + 0*-a                  + a*a + a*-a
L1: -a*-a          + 0                     + a*a + a*-a
A2: -a*-a                                  + a*a + a*-a
A4: a*a + -a*-a + a*-a
A8: a*a + (-a+a)*-a
A3: a*a + 0*-a
L1: a*a + 0
A2: a*a

1
Tôi nhận thấy thiếu parens sau một thời gian. Bởi vì các bước chi phí liên kết, tôi nghĩ rằng sẽ giúp việc xác minh bằng chứng của bạn dễ dàng hơn nếu bạn bao gồm các khoản tiền.
Sriotchilism O'Z cổ

Vẫn đang cải thiện và cập nhật. Sẽ cố gắng bao gồm tất cả các parens khi tôi hoàn thành.
Sparr

5

25 bước

Lưu ý: dựa trên câu hỏi, tôi giả định rằng các quy tắc logic (bao gồm cả đẳng thức) được ngụ ý và không được tính vào tổng số bước. Nghĩa là, những thứ như "if x = y, thì y = x" và "if ((P VÀ Q) VÀ R) thì (P AND (Q VÀ R))" có thể được sử dụng ngầm.

Bổ đề Z [6 bước] : 0*a = 0:

0 = (0*a) + (-(0*a))       | Ax. 3
  = ((0+0)*a) + (-(0*a))   | Ax. 2
  = (0*a + 0*a) + (-(0*a)) | Ax. 9
  = 0*a + (0*a + (-(0*a))) | Ax. 1
  = 0*a + (0)              | Ax. 3
  = 0*a                    | Ax. 2

Bổ đề M [12 bước] :(-a)*b = -(a*b)

(-a)*b = (-a)*b + 0                | Ax. 2
       = (-a)*b + (a*b + (-(a*b))) | Ax. 3
       = ((-a)*b + a*b) + (-(a*b)) | Ax. 5
       = ((-a)+a)*b + (-(a*b))     | Ax. 9
       = 0*b + (-(a*b))            | Ax. 3
       = 0 + (-(a*b))              | Lem. Z [6]
       = -(a*b)                    | Ax. 2

Định lý [25 bước] :(-a)*(-a) = a*a

(-a)*(-a) = (-a)*(-a) + 0                | Ax. 2
          = 0 + (-a)*(-a)                | Ax. 4
          = (a*a + (-(a*a))) + (-a)*(-a) | Ax. 3
          = a*a + ((-(a*a)) + (-a)*(-a)) | Ax. 1
          = a*a + ((-a)*a + (-a)*(-a))   | Lem. M [12]
          = a*a + ((-a)*(a + (-a)))      | Ax. 8
          = a*a + ((-a)*0)               | Ax. 3
          = a*a + 0                      | Lem. Z [6]
          = a*a                          | Ax. 2

Tôi cảm thấy như có chỗ để cải thiện ở đây; ví dụ, tôi sử dụng tính chất giao hoán của phép cộng, mặc dù cảm thấy như thế là không cần thiết, vì (-a)*(-a) = a*anó đúng trong các cấu trúc đại số trong đó phép cộng không giao hoán. Mặt khác, trong các cấu trúc đó, danh tính phụ gia là giao hoán và đó là tất cả những gì tôi cần cho bằng chứng. Tôi không biết. Tổng quát hơn, cấu trúc của bằng chứng dường như khá vô hướng; Tôi chỉ sắp xếp các vấn đề cho đến khi nó hoạt động, vì vậy tôi cá là sẽ có một số tối ưu hóa được thực hiện.

Điều này thật thú vị - cảm ơn vì câu hỏi thú vị và sáng tạo của OP! Tôi chưa từng thấy những thử thách như thế này trước đây; hy vọng trở thành một điều!


Tôi thấy cách tiếp cận được sử dụng trong Lemma Z có thể đưa ra một bằng chứng tương đương 0=(-a)*0trong 6 bước. Về mặt kỹ thuật, nó xứng đáng với Bổ đề của riêng mình, phải không?
SmileAndNod

4

22 23 bước

Câu trả lời mới, như trước đây của tôi là thiếu sót. Hãy để tôi thêm một số ý kiến ​​chung trước:

  • Vấn đề không cho phép thêm các điều khoản trên cả hai mặt của một phương trình; thay vào đó, chúng tôi chỉ có thể sửa đổi một chuỗi ban đầu.
  • Phép nhân không được coi là giao hoán.
  • Chúng tôi được cấp một đơn vị 1 , nhưng nó không đóng vai trò gì trong câu đố vì nó chỉ liên quan đến các quy tắc xác định nó.

Bây giờ để chứng minh (chú ý tôi xác định n = (-a) để đơn giản hóa việc đọc):

(-a)×(-a) :=
n×n =
n×n + 0 =                                [Ax. 2]
n×n + [n×a + -(n×a)] =                   [Ax. 3]
[n×n + n×a] + -(n×a) =                   [Ax. 1]
[n×(n+a)] + -(n×a) =                     [Ax. 8]
[n×(n+a) + 0] + -(n×a) =                 [Ax. 2]
[n×(n+a) + (n×a + -(n×a))] + -(n×a) =    [Ax. 3]
[(n×(n+a) + n×a) + -(n×a)] + -(n×a) =    [Ax. 1]
[n×((n+a) + a) + -(n×a)] + -(n×a) =      [Ax. 8]
[n×((a+n) + a) + -(n×a)] + -(n×a) =      [Ax. 4]
[n×(0 + a) + -(n×a)] + -(n×a) =          [Ax. 3]
[n×(a + 0) + -(n×a)] + -(n×a) =          [Ax. 4]
[n×a + -(n×a)] + -(n×a) =                [Ax. 2]
[(n+0)×a + -(n×a)] + -(n×a) =            [Ax. 2]
[(0+n)×a + -(n×a)] + -(n×a) =            [Ax. 4]
[((a+n)+n)×a + -(n×a)] + -(n×a) =        [Ax. 3]
[((a+n)×a+n×a) + -(n×a)] + -(n×a) =      [Ax. 9]
[(a+n)×a+(n×a + -(n×a))] + -(n×a) =      [Ax. 1]
[(a+n)×a + 0] + -(n×a) =                 [Ax. 3]
[(a+n)×a] + -(n×a) =                     [Ax. 2]
[a×a+n×a] + -(n×a) =                     [Ax. 9]
a×a+[n×a + -(n×a)] =                     [Ax. 1]
a×a+0 =                                  [Ax. 3]
a×a                                      [Ax. 2]

@ H.PWiz lý do tại sao bạn không thể đi từ nđể 0 + nchỉ trong một bước? Không phải đó chỉ là A2 sao? Các quy tắc có nói Các biến cũng có thể thay thế cho các biểu thức phức tạp tùy ý
jq170727

@ jq170727 Tiên đề 2 chỉ nói rằng a + 0 = akhông phải vậy 0 + a = a. Bạn cần thêm một bước giao hoán để đi từ nđến 0 + n.
Sriotchilism O'Z cổ

@ H.PWiz bạn không thể đọc tiên đề ngược?
jq170727

1
@ jq170727 Không bạn phải sử dụng giao hoán cho điều đó.
Jalil Compaoré

4

304 bước

Wiki cộng đồng vì bằng chứng này được tạo bởi hàm FindEquationalProof của Mathematica .

Bằng chứng là khá dài. Mathematica không biết chơi gôn.

Đây là mã Mathematica mà tạo ra các bằng chứng (yêu cầu Mathematica 11,3), nơi p, t, nphương tiện +, ×, -lần lượt là:

ringAxioms = {ForAll[{a, b, c}, p[a, p[b, c]] == p[p[a, b], c]],
   ForAll[a, p[a, 0] == a],
   ForAll[a, p[a, n[a]] == 0],
   ForAll[{a, b}, p[a, b] == p[b, a]],
   ForAll[{a, b, c}, t[a, t[b, c]] == t[t[a, b], c]],
   ForAll[a, t[a, 1] == a], ForAll[a, t[1, a] == a],
   ForAll[{a, b, c}, t[a, p[b, c]] == p[t[a, b], t[a, c]]],
   ForAll[{a, b, c}, t[p[b, c], a] == p[t[b, a], t[c, a]]]};

proof = FindEquationalProof[t[n[a], n[a]] == t[a, a], ringAxioms];

proof["ProofNotebook"]

Không dễ để đếm các bước trực tiếp, vì vậy tôi tính toán nó theo số lượng đường dẫn từ các tiên đề đến kết luận trong "biểu đồ chứng minh".

graph = proof["ProofGraph"];
score = Sum[
  Length[FindPath[graph, axiom, "Conclusion 1", Infinity, 
    All]], {axiom, 
   Select[VertexList[graph], StringMatchQ["Axiom " ~~ __]]}]

Hãy thử trực tuyến!

Đây là bằng chứng được tạo bởi mã:

Axiom 1

We are given that:

x1==p[x1, 0]

Axiom 2

We are given that:

x1==t[x1, 1]

Axiom 3

We are given that:

x1==t[1, x1]

Axiom 4

We are given that:

p[x1, x2]==p[x2, x1]

Axiom 5

We are given that:

p[x1, p[x2, x3]]==p[p[x1, x2], x3]

Axiom 6

We are given that:

p[x1, n[x1]]==0

Axiom 7

We are given that:

p[t[x1, x2], t[x3, x2]]==t[p[x1, x3], x2]

Axiom 8

We are given that:

p[t[x1, x2], t[x1, x3]]==t[x1, p[x2, x3]]

Axiom 9

We are given that:

t[x1, t[x2, x3]]==t[t[x1, x2], x3]

Hypothesis 1

We would like to show that:

t[n[a], n[a]]==t[a, a]

Critical Pair Lemma 1

The following expressions are equivalent:

p[0, x1]==x1

Proof

Note that the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, 0]->x1

where these rules follow from Axiom 4 and Axiom 1 respectively.

Critical Pair Lemma 2

The following expressions are equivalent:

p[x1, p[n[x1], x2]]==p[0, x2]

Proof

Note that the input for the rule:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Axiom 5 and Axiom 6 respectively.

Critical Pair Lemma 3

The following expressions are equivalent:

t[p[1, x1], x2]==p[x2, t[x1, x2]]

Proof

Note that the input for the rule:

p[t[x1_, x2_], t[x3_, x2_]]->t[p[x1, x3], x2]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[1, x1_]->x1

where these rules follow from Axiom 7 and Axiom 3 respectively.

Critical Pair Lemma 4

The following expressions are equivalent:

t[x1, p[1, x2]]==p[x1, t[x1, x2]]

Proof

Note that the input for the rule:

p[t[x1_, x2_], t[x1_, x3_]]->t[x1, p[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[x1_, 1]->x1

where these rules follow from Axiom 8 and Axiom 2 respectively.

Critical Pair Lemma 5

The following expressions are equivalent:

t[p[1, x1], 0]==t[x1, 0]

Proof

Note that the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

contains a subpattern of the form:

p[x1_, t[x2_, x1_]]

which can be unified with the input for the rule:

p[0, x1_]->x1

where these rules follow from Critical Pair Lemma 3 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 6

The following expressions are equivalent:

t[0, 0]==t[1, 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, 0]->x1

where these rules follow from Critical Pair Lemma 5 and Axiom 1 respectively.

Substitution Lemma 1

It can be shown that:

t[0, 0]==0

Proof

We start by taking Critical Pair Lemma 6, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Critical Pair Lemma 7

The following expressions are equivalent:

t[x1, 0]==t[p[x1, 1], 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

where these rules follow from Critical Pair Lemma 5 and Axiom 4 respectively.

Critical Pair Lemma 8

The following expressions are equivalent:

t[0, p[1, x1]]==t[0, x1]

Proof

Note that the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

contains a subpattern of the form:

p[x1_, t[x1_, x2_]]

which can be unified with the input for the rule:

p[0, x1_]->x1

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 9

The following expressions are equivalent:

t[p[x1, 1], p[1, 0]]==p[p[x1, 1], t[x1, 0]]

Proof

Note that the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[p[x1_, 1], 0]->t[x1, 0]

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 7 respectively.

Substitution Lemma 2

It can be shown that:

t[p[x1, 1], 1]==p[p[x1, 1], t[x1, 0]]

Proof

We start by taking Critical Pair Lemma 9, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Substitution Lemma 3

It can be shown that:

p[x1, 1]==p[p[x1, 1], t[x1, 0]]

Proof

We start by taking Substitution Lemma 2, and apply the substitution:

t[x1_, 1]->x1

which follows from Axiom 2.

Substitution Lemma 4

It can be shown that:

p[x1, 1]==p[x1, p[1, t[x1, 0]]]

Proof

We start by taking Substitution Lemma 3, and apply the substitution:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

which follows from Axiom 5.

Critical Pair Lemma 10

The following expressions are equivalent:

t[0, x1]==t[0, p[x1, 1]]

Proof

Note that the input for the rule:

t[0, p[1, x1_]]->t[0, x1]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

where these rules follow from Critical Pair Lemma 8 and Axiom 4 respectively.

Critical Pair Lemma 11

The following expressions are equivalent:

t[p[1, 0], p[x1, 1]]==p[p[x1, 1], t[0, x1]]

Proof

Note that the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

contains a subpattern of the form:

t[x2_, x1_]

which can be unified with the input for the rule:

t[0, p[x1_, 1]]->t[0, x1]

where these rules follow from Critical Pair Lemma 3 and Critical Pair Lemma 10 respectively.

Substitution Lemma 5

It can be shown that:

t[1, p[x1, 1]]==p[p[x1, 1], t[0, x1]]

Proof

We start by taking Critical Pair Lemma 11, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Substitution Lemma 6

It can be shown that:

p[x1, 1]==p[p[x1, 1], t[0, x1]]

Proof

We start by taking Substitution Lemma 5, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Substitution Lemma 7

It can be shown that:

p[x1, 1]==p[x1, p[1, t[0, x1]]]

Proof

We start by taking Substitution Lemma 6, and apply the substitution:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

which follows from Axiom 5.

Substitution Lemma 8

It can be shown that:

p[x1, p[n[x1], x2]]==x2

Proof

We start by taking Critical Pair Lemma 2, and apply the substitution:

p[0, x1_]->x1

which follows from Critical Pair Lemma 1.

Critical Pair Lemma 12

The following expressions are equivalent:

n[n[x1]]==p[x1, 0]

Proof

Note that the input for the rule:

p[x1_, p[n[x1_], x2_]]->x2

contains a subpattern of the form:

p[n[x1_], x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Substitution Lemma 8 and Axiom 6 respectively.

Substitution Lemma 9

It can be shown that:

n[n[x1]]==x1

Proof

We start by taking Critical Pair Lemma 12, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 13

The following expressions are equivalent:

x1==p[n[x2], p[x2, x1]]

Proof

Note that the input for the rule:

p[x1_, p[n[x1_], x2_]]->x2

contains a subpattern of the form:

n[x1_]

which can be unified with the input for the rule:

n[n[x1_]]->x1

where these rules follow from Substitution Lemma 8 and Substitution Lemma 9 respectively.

Critical Pair Lemma 14

The following expressions are equivalent:

t[x1, x2]==p[n[x2], t[p[1, x1], x2]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

where these rules follow from Critical Pair Lemma 13 and Critical Pair Lemma 3 respectively.

Critical Pair Lemma 15

The following expressions are equivalent:

t[x1, x2]==p[n[x1], t[x1, p[1, x2]]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

where these rules follow from Critical Pair Lemma 13 and Critical Pair Lemma 4 respectively.

Critical Pair Lemma 16

The following expressions are equivalent:

p[1, t[x1, 0]]==p[n[x1], p[x1, 1]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, p[1, t[x1_, 0]]]->p[x1, 1]

where these rules follow from Critical Pair Lemma 13 and Substitution Lemma 4 respectively.

Substitution Lemma 10

It can be shown that:

p[1, t[x1, 0]]==1

Proof

We start by taking Critical Pair Lemma 16, and apply the substitution:

p[n[x1_], p[x1_, x2_]]->x2

which follows from Critical Pair Lemma 13.

Critical Pair Lemma 17

The following expressions are equivalent:

t[t[x1, 0], 0]==t[1, 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[1, t[x1_, 0]]->1

where these rules follow from Critical Pair Lemma 5 and Substitution Lemma 10 respectively.

Substitution Lemma 11

It can be shown that:

t[x1, t[0, 0]]==t[1, 0]

Proof

We start by taking Critical Pair Lemma 17, and apply the substitution:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

which follows from Axiom 9.

Substitution Lemma 12

It can be shown that:

t[x1, 0]==t[1, 0]

Proof

We start by taking Substitution Lemma 11, and apply the substitution:

t[0, 0]->0

which follows from Substitution Lemma 1.

Substitution Lemma 13

It can be shown that:

t[x1, 0]==0

Proof

We start by taking Substitution Lemma 12, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Critical Pair Lemma 18

The following expressions are equivalent:

t[x1, t[0, x2]]==t[0, x2]

Proof

Note that the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[x1_, 0]->0

where these rules follow from Axiom 9 and Substitution Lemma 13 respectively.

Critical Pair Lemma 19

The following expressions are equivalent:

p[1, t[0, x1]]==p[n[x1], p[x1, 1]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, p[1, t[0, x1_]]]->p[x1, 1]

where these rules follow from Critical Pair Lemma 13 and Substitution Lemma 7 respectively.

Substitution Lemma 14

It can be shown that:

p[1, t[0, x1]]==1

Proof

We start by taking Critical Pair Lemma 19, and apply the substitution:

p[n[x1_], p[x1_, x2_]]->x2

which follows from Critical Pair Lemma 13.

Critical Pair Lemma 20

The following expressions are equivalent:

t[0, t[0, x1]]==t[0, 1]

Proof

Note that the input for the rule:

t[0, p[1, x1_]]->t[0, x1]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[1, t[0, x1_]]->1

where these rules follow from Critical Pair Lemma 8 and Substitution Lemma 14 respectively.

Substitution Lemma 15

It can be shown that:

t[0, x1]==t[0, 1]

Proof

We start by taking Critical Pair Lemma 20, and apply the substitution:

t[x1_, t[0, x2_]]->t[0, x2]

which follows from Critical Pair Lemma 18.

Substitution Lemma 16

It can be shown that:

t[0, x1]==0

Proof

We start by taking Substitution Lemma 15, and apply the substitution:

t[x1_, 1]->x1

which follows from Axiom 2.

Critical Pair Lemma 21

The following expressions are equivalent:

t[n[1], x1]==p[n[x1], t[0, x1]]

Proof

Note that the input for the rule:

p[n[x1_], t[p[1, x2_], x1_]]->t[x2, x1]

contains a subpattern of the form:

p[1, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Critical Pair Lemma 14 and Axiom 6 respectively.

Substitution Lemma 17

It can be shown that:

t[n[1], x1]==p[n[x1], 0]

Proof

We start by taking Critical Pair Lemma 21, and apply the substitution:

t[0, x1_]->0

which follows from Substitution Lemma 16.

Substitution Lemma 18

It can be shown that:

t[n[1], x1]==n[x1]

Proof

We start by taking Substitution Lemma 17, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 22

The following expressions are equivalent:

t[n[1], t[x1, x2]]==t[n[x1], x2]

Proof

Note that the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[n[1], x1_]->n[x1]

where these rules follow from Axiom 9 and Substitution Lemma 18 respectively.

Substitution Lemma 19

It can be shown that:

n[t[x1, x2]]==t[n[x1], x2]

Proof

We start by taking Critical Pair Lemma 22, and apply the substitution:

t[n[1], x1_]->n[x1]

which follows from Substitution Lemma 18.

Critical Pair Lemma 23

The following expressions are equivalent:

t[x1, n[1]]==p[n[x1], t[x1, 0]]

Proof

Note that the input for the rule:

p[n[x1_], t[x1_, p[1, x2_]]]->t[x1, x2]

contains a subpattern of the form:

p[1, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Critical Pair Lemma 15 and Axiom 6 respectively.

Substitution Lemma 20

It can be shown that:

t[x1, n[1]]==p[n[x1], 0]

Proof

We start by taking Critical Pair Lemma 23, and apply the substitution:

t[x1_, 0]->0

which follows from Substitution Lemma 13.

Substitution Lemma 21

It can be shown that:

t[x1, n[1]]==n[x1]

Proof

We start by taking Substitution Lemma 20, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 24

The following expressions are equivalent:

n[t[x1, x2]]==t[x1, t[x2, n[1]]]

Proof

Note that the input for the rule:

t[x1_, n[1]]->n[x1]

contains a subpattern of the form:

t[x1_, n[1]]

which can be unified with the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

where these rules follow from Substitution Lemma 21 and Axiom 9 respectively.

Substitution Lemma 22

It can be shown that:

t[n[x1], x2]==t[x1, t[x2, n[1]]]

Proof

We start by taking Critical Pair Lemma 24, and apply the substitution:

n[t[x1_, x2_]]->t[n[x1], x2]

which follows from Substitution Lemma 19.

Substitution Lemma 23

It can be shown that:

t[n[x1], x2]==t[x1, n[x2]]

Proof

We start by taking Substitution Lemma 22, and apply the substitution:

t[x1_, n[1]]->n[x1]

which follows from Substitution Lemma 21.

Substitution Lemma 24

It can be shown that:

t[a, n[n[a]]]==t[a, a]

Proof

We start by taking Hypothesis 1, and apply the substitution:

t[n[x1_], x2_]->t[x1, n[x2]]

which follows from Substitution Lemma 23.

Conclusion 1

We obtain the conclusion:

True

Proof

Take Substitution Lemma 24, and apply the substitution:

n[n[x1_]]->x1

which follows from Substitution Lemma 9.
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.