Chặn phân vùng một chuỗi


11

Cảm hứng .

Hãy xem xét một danh sách l, bao gồm các số. Xác định một hoạt động khối tại chỉ mục itrong danh sách llà hành động di chuyển 3 yếu tố liên tiếp bắt đầu từ itrong lđến cuối.

Thí dụ:

l, i (1-indexing) -> l (after applying block operation at index i)
[1,2,3,4,5], 1 -> [4,5,1,2,3]
[1,2,3,4,5,6,7], 3 -> [1,2,6,7,3,4,5]

Đưa ra một danh sách chỉ gồm 0 và 1, thử thách của bạn là phân vùng nó sao cho các số 0 ở phía trước và các danh sách ở phía sau, chỉ sử dụng các thao tác khối. Đầu ra phải là các chỉ số theo thứ tự chúng được áp dụng trong danh sách.

Bởi vì điều này là không thể đối với danh sách [1,0,1,0], độ dài danh sách được đảm bảo ít nhất là 5.

Các trường hợp thử nghiệm (lập chỉ mục 1)

(có đầu ra hợp lệ khác)

[1,1,1,0,0] -> [1]
[0,1,0,1,0] -> [1,2,1,1]
[0,0,0,1,1,1,0,0,0] -> [4]

Sử dụng tập lệnh này để tạo ra nhiều trường hợp thử nghiệm. (chỉ nhập liệu. Phần rplc ' ';','được sử dụng để r e pl a c e khoảng trắng có dấu phẩy ở đầu ra)

Tiêu chí chiến thắng

là tiêu chí chiến thắng chính và là bộ ngắt kết nối. Đặc biệt:

  • Giải pháp có độ dài đầu ra ngắn nhất (số lượng hoạt động khối ít nhất) với trường hợp thử nghiệm ( n_elem= 500, random_seed= {giá trị bí mật}) sẽ thắng. Bạn sẽ có thể chạy giải pháp của mình để hoàn thành với trường hợp thử nghiệm ( n_elem= 500, random_seed= 123456).
  • Trong trường hợp quan hệ, giải pháp có thể xử lý giá trị sức mạnh lớn nhất là 2 n_elemvới random_seed= {giá trị bí mật} trong vòng 10 giây (đối với tôi) sẽ thắng.
  • Trong trường hợp quan hệ, giải pháp mất ít thời gian hơn cho trường hợp thử nghiệm đó sẽ thắng.

Sandbox bài . (lưu ý) Tôi có một giải pháp không gian tuyến tính thời gian tuyến tính, nhưng nó có yếu tố không đổi rất lớn, bên cạnh đó không dễ thực hiện. Có thể giảm yếu tố không đổi nhưng sau đó thậm chí còn khó thực hiện hơn.
dùng202729

(từ chối trách nhiệm: Tôi đã giải quyết thách thức được liên kết)
user202729

Chỉ cần làm rõ, đầu ra không cần phải là đầu ra ngắn nhất có thể?
JungHwan Min

@JungHwanMin Đúng.
dùng202729

Câu trả lời:


8

Các bước Python 3 , (0.397 n + 3.58)

Hồi quy đa thức 1000 điểm bằng numpy.polyfit.


  • Số bước cho phiên bản 1: 0,0546 n² + 2,80 n - 221
  • Số bước cho phiên bản 2: 0,0235 n² + 0,965 n - 74
  • Số bước cho phiên bản 3: 0,00965 n² + 2,35 n - 111
  • Số bước cho phiên bản 4: 1.08 n - 36.3
  • Số bước cho phiên bản 5: 0.397 n + 3.58

  • Điểm kiểm tra bí mật cho phiên bản 1: 14468
  • Điểm kiểm tra bí mật cho phiên bản 2: 5349
  • Điểm kiểm tra bí mật cho phiên bản 3: 4143
  • Điểm kiểm tra bí mật cho phiên bản 4: 450
  • Điểm kiểm tra bí mật cho phiên bản 5: 205

def partite(L):
	endgame5 = [9,9,1,9,0,0,1,9,
		0,1,0,1,0,1,1,9,
		0,0,1,0,0,0,1,0,
		0,0,0,1,0,0,0,9]
	endgame6 = [9,9,2,9,1,1,2,9,0,2,0,0,1,2,2,9,
		0,1,2,1,0,1,2,1,0,1,0,2,1,1,0,9,
		0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,1,
		0,0,2,2,0,0,2,2,0,0,0,0,0,0,0,9]
	endgame = [9,9,3,9,2,2,3,9,1,0,3,0,2,0,3,9,0,1,3,3,2,2,3,0,1,0,1,0,2,1,0,9,
		0,0,2,1,0,0,2,2,1,0,1,2,0,0,0,2,0,1,3,3,3,3,3,0,1,1,1,1,1,3,0,9,
		0,0,0,0,1,0,1,1,1,0,3,0,1,0,1,0,0,1,0,0,1,1,0,0,1,0,0,0,2,0,1,0,
		0,0,2,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0,3,0,3,0,3,0,3,0,2,3,3,0,0,9]
	offset = 1
	steps = []
	def update(L,steps,ind):
		steps.append(offset + ind)
		if 0 <= ind and ind+3 < len(L):
			return (steps,L[:ind]+L[ind+3:]+L[ind:ind+3])
		else:
			print(offset,ind,L)
			raise
	if len(L) == 5:
		while endgame5[L[0]*16+L[1]*8+L[2]*4+L[3]*2+L[4]] != 9:
			steps, L = update(L,steps,endgame5[L[0]*16+L[1]*8+L[2]*4+L[3]*2+L[4]])
		return steps
	if len(L) == 6:
		while endgame6[L[0]*32+L[1]*16+L[2]*8+L[3]*4+L[4]*2+L[5]] != 9:
			steps, L = update(L,steps,endgame6[L[0]*32+L[1]*16+L[2]*8+L[3]*4+L[4]*2+L[5]])
		return steps
	if 1 not in L:
		return []
	while len(L) > 7 and 0 in L:
		wf_check = len(L)
		while L[0] != 0:
			pos = [-1]
			wf_check2 = -1
			while True:
				i = pos[-1]+1
				while i < len(L):
					if L[i] == 0:
						pos.append(i)
						i += 1
					else:
						i += 3
				assert len(pos) > wf_check2
				wf_check2 = len(pos)
				space = (pos[-1]-len(L)+1)%3
				ind = -1
				tail = pos.pop()
				i = len(L)-1
				while i >= 0:
					if tail == i:
						while tail == i:
							i -= 1
							tail = pos.pop() if pos else -1
						i -= 2
					elif i < len(L)-3 and L[i+space] == 0:
						ind = i
						break
					else:
						i -= 1
				if ind == -1:
					break
				steps, L = update(L, steps, ind)
				pos = pos or [-1]
			if L[0] == 0:
				break
			pos = [-1]
			while L[0] != 0:
				pos = [-1]
				found = False
				for i in range(1,len(L)):
					if L[i] == 0:
						if i%3 == (pos[-1]+1)%3:
							pos.append(i)
						else:
							found = found or i
				if found > len(L)-4:
					found = False
				if not found:
					break
				triple = []
				for i in range(1,len(L)-1):
					if L[i-1] == 1 and L[i] == 1 and L[i+1] == 1:
						triple.append(i)
					if len(triple) > 3:
						break
				space = (pos[-1]-len(L)+1)%3
				if space == 0:
					if found >= 2 and found-2 not in pos and found-1 not in pos:
						# ... _ 1 _ [0] 0 ...
						if found-2 in triple:
							triple.remove(found-2)
						if found-3 in triple:
							triple.remove(found-3)
						if L[-1] == 1:
							steps, L = update(L, steps, found-2)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
						elif triple:
							steps, L = update(L, steps, found-2)
							if found < triple[0]:
								triple[0] -= 3
							steps, L = update(L, steps, triple[0]-1)
							steps, L = update(L, steps, len(L)-4)
						else:
							break
						assert L[-3] == 0
					elif found >= 1 and found-1 not in pos and found+1 not in pos:
						# ... _ 1 [0] _ 0 ...
						if found-2 in triple:
							triple.remove(found-2)
						if L[-2] == 1 and L[-1] == 1:
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-5)
							steps, L = update(L, steps, len(L)-5)
						elif triple:
							steps, L = update(L, steps, found-1)
							if found < triple[0]:
								triple[0] -= 3
							steps, L = update(L, steps, triple[0]-1)
							steps, L = update(L, steps, len(L)-5)
						elif L[-1] == 1:
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
						else:
							break
						assert L[-3] == 0
					else:
						break
				elif space == 1:
					# ... 1 1 [0] 0 ...
					if found >= 2 and found-2 not in pos and found-1 not in pos:
						if found-2 in triple:
							triple.remove(found-2)
						if found-3 in triple:
							triple.remove(found-3)
						if triple:
							steps, L = update(L, steps, found-2)
							if found < triple[0]:
								triple[0] -= 3
							steps, L = update(L, steps, triple[0]-1)
							steps, L = update(L, steps, len(L)-5)
						elif L[-2] == 1 and L[-1] == 1:
							steps, L = update(L, steps, found-2)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-5)
						else:
							break
						assert L[-2] == 0
					else:
						break
				else:
					if found+1 not in pos and found+2 not in pos:
						# ... 0 [0] _ 1 _ ...
						if found+2 in triple:
							triple.remove(found+2)
						if found+3 in triple:
							triple.remove(found+3)
						if L[-2] == 1 and L[-1] == 1:
							steps, L = update(L, steps, found)
							steps, L = update(L, steps, len(L)-5)
						elif L[-1] == 1:
							steps, L = update(L, steps, found)
							steps, L = update(L, steps, len(L)-4)
							steps, L = update(L, steps, len(L)-4)
						elif triple:
							steps, L = update(L, steps, triple[0]-1)
							if triple[0] < found:
								found -= 3
							steps, L = update(L, steps, found)
							steps, L = update(L, steps, len(L)-5)
						else:
							break
						assert L[-1] == 0
					elif found >= 1 and found-1 not in pos and found+1 not in pos:
						# ... 0 _ [0] 1 _ ...
						if found+2 in triple:
							triple.remove(found+2)
						if L[-1] == 1:
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-4)
						elif triple:
							steps, L = update(L, steps, triple[0]-1)
							if triple[0] < found:
								found -= 3
							steps, L = update(L, steps, found-1)
							steps, L = update(L, steps, len(L)-4)
						else:
							break
						assert L[-1] == 0
					else:
						break
			if L[0] == 0:
				break
			if 0 in L[::3]:
				assert L[::3].index(0) < wf_check
				wf_check = L[::3].index(0)
			steps, L = update(L, steps, 0)
		assert L[0] == 0
		offset += L.index(1)
		del L[:L.index(1)]
		continue
	if 0 in L:
		offset -= 7-len(L)
		L = [0]*(7-len(L))+L
		assert(len(L) == 7)
		while endgame[L[0]*64+L[1]*32+L[2]*16+L[3]*8+L[4]*4+L[5]*2+L[6]] != 9:
			steps, L = update(L,steps,endgame[L[0]*64+L[1]*32+L[2]*16+L[3]*8+L[4]*4+L[5]*2+L[6]])
	return steps

Hãy thử trực tuyến!


3

Python 3, ~ 179 bước cho n = 500 (trung bình)

Một cách tiếp cận tham lam heuristic. Kinda chậm nhưng vẫn hoạt động. Sử dụng một bộ giải tối ưu cho kích thước nhỏ.

def incomplete_groups(l):
    r = 0
    ones = 0
    for x in l:
        if x == "1":
            ones += 1
        else:
            if ones % 3:
                r += 1
            ones = 0
    # Ones at the end don't count as an incomplete group.

    return r

def move(l, i):
    return l[:i] + l[i+3:] + l[i:i+3]

def best_pos(l, hist):
    r = []
    cleanup = incomplete_groups(l) == 0

    candidates = []
    for i in range(len(l) - 3):
        block = l[i:i+3]
        if block == "111" and cleanup:
            return i
        elif block == "111":
            continue

        new = move(l, i)
        bad_start = i < 3 and "10" in l[:3]
        candidates.append((new not in hist, -incomplete_groups(new), bad_start, block != "000", i))

    candidates.sort(reverse=True)
    return candidates[0][-1]

def done(l):
    return list(l) == sorted(l)



class IDAStar:
    def __init__(self, h, neighbours):
        """ Iterative-deepening A* search.

        h(n) is the heuristic that gives the cost between node n and the goal node. It must be admissable, meaning that h(n) MUST NEVER OVERSTIMATE the true cost. Underestimating is fine.

        neighbours(n) is an iterable giving a pair (cost, node, descr) for each node neighbouring n
        IN ASCENDING ORDER OF COST. descr is not used in the computation but can be used to
        efficiently store information about the path edges (e.g. up/left/right/down for grids).
        """

        self.h = h
        self.neighbours = neighbours
        self.FOUND = object()


    def solve(self, root, is_goal, max_cost=None):
        """ Returns the shortest path between the root and a given goal, as well as the total cost.
        If the cost exceeds a given max_cost, the function returns None. If you do not give a
        maximum cost the solver will never return for unsolvable instances."""

        self.is_goal = is_goal
        self.path = [root]
        self.is_in_path = {root}
        self.path_descrs = []
        self.nodes_evaluated = 0

        bound = self.h(root)

        while True:
            t = self._search(0, bound)
            if t is self.FOUND: return self.path, self.path_descrs, bound, self.nodes_evaluated
            if t is None: return None
            bound = t

    def _search(self, g, bound):
        self.nodes_evaluated += 1

        node = self.path[-1]
        f = g + self.h(node)
        if f > bound: return f
        if self.is_goal(node): return self.FOUND

        m = None # Lower bound on cost.
        for cost, n, descr in self.neighbours(node):
            if n in self.is_in_path: continue

            self.path.append(n)
            self.is_in_path.add(n)
            self.path_descrs.append(descr)
            t = self._search(g + cost, bound)

            if t == self.FOUND: return self.FOUND
            if m is None or (t is not None and t < m): m = t

            self.path.pop()
            self.path_descrs.pop()
            self.is_in_path.remove(n)

        return m

def h(l):
    """Number of groups of 1 with length <= 3 that come before a zero."""
    h = 0
    num_ones = 0
    complete_groups = 0
    incomplete_groups = 0
    for x in l:
        if x == "1":
            num_ones += 1
        else:
            while num_ones > 3:
                num_ones -= 3
                h += 1
                complete_groups += 1
            if num_ones > 0:
                h += 1
                incomplete_groups += 1
            num_ones = 0

    return complete_groups + incomplete_groups

def neighbours(l):
    inc_groups = incomplete_groups(l)
    final = inc_groups == 0

    candidates = []
    for i in range(len(l) - 3):
        left = l[:i]
        block = l[i:i+3]
        right = l[i+3:]
        cand = (1, left + right + block, i)

        # Optimal choice.
        if final and (block != "111" or i >= len(l.rstrip("1"))):
            continue

        candidates.append(cand)

    candidates.sort(key=lambda c: c[2], reverse=True)

    return candidates


def is_goal(l):
    return all(l[i] <= l[i+1] for i in range(len(l)-1))

opt_solver = IDAStar(h, neighbours)

def partite(l):
    if isinstance(l, list):
        l = "".join(map(str, l))
    if len(l) < 10:
        return [i + 1 for i in opt_solver.solve(l, is_goal)[1]]
    moves = []
    hist = [l]
    while not done(l):
        i = best_pos(l, hist)
        l = move(l, i)
        moves.append(i+1)
        hist.append(l)
    return moves
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.