Ngôn ngữ Wolfram 190 byte
Sau đây trả về tất cả các cạnh của đồ thị theo tọa độ thực (giả sử mỗi khối lập phương nhỏ là 2 đơn vị ở cạnh và khối Rubik có đỉnh dưới cùng bên trái ở gốc).
t=Table;h[a_,b_,c_]:=t[{x,y,z},{a,1,5,2},{b,1,5,2},{c,0,6,6}];Partition[Sort[a=Cases[DeleteCases[Tuples[Flatten[{h[x,z,y],h[y,z,x],h[x,y,z]},3],{2}],{x_,x_}],x_/;ManhattanDistance@@x==2]],4]
(* output *)
{{{{0,1,1},{0,1,3}},{{0,1,1},{0,3,1}},{{0,1,1},{1,0,1}},{{0,1,1},{1,1,0}}},{{{0,1,3},{0,1,1}},{{0,1,3},{0,1,5}},{{0,1,3},{0,3,3}},{{0,1,3},{1,0,3}}},{{{0,1,5},{0,1,3}},{{0,1,5},{0,3,5}},{{0,1,5},{1,0,5}},{{0,1,5},{1,1,6}}},{{{0,3,1},{0,1,1}},{{0,3,1},{0,3,3}},{{0,3,1},{0,5,1}},{{0,3,1},{1,3,0}}},{{{0,3,3},{0,1,3}},{{0,3,3},{0,3,1}},{{0,3,3},{0,3,5}},{{0,3,3},{0,5,3}}},{{{0,3,5},{0,1,5}},{{0,3,5},{0,3,3}},{{0,3,5},{0,5,5}},{{0,3,5},{1,3,6}}},{{{0,5,1},{0,3,1}},{{0,5,1},{0,5,3}},{{0,5,1},{1,5,0}},{{0,5,1},{1,6,1}}},{{{0,5,3},{0,3,3}},{{0,5,3},{0,5,1}},{{0,5,3},{0,5,5}},{{0,5,3},{1,6,3}}},{{{0,5,5},{0,3,5}},{{0,5,5},{0,5,3}},{{0,5,5},{1,5,6}},{{0,5,5},{1,6,5}}},{{{1,0,1},{0,1,1}},{{1,0,1},{1,0,3}},{{1,0,1},{1,1,0}},{{1,0,1},{3,0,1}}},{{{1,0,3},{0,1,3}},{{1,0,3},{1,0,1}},{{1,0,3},{1,0,5}},{{1,0,3},{3,0,3}}},{{{1,0,5},{0,1,5}},{{1,0,5},{1,0,3}},{{1,0,5},{1,1,6}},{{1,0,5},{3,0,5}}},{{{1,1,0},{0,1,1}},{{1,1,0},{1,0,1}},{{1,1,0},{1,3,0}},{{1,1,0},{3,1,0}}},{{{1,1,6},{0,1,5}},{{1,1,6},{1,0,5}},{{1,1,6},{1,3,6}},{{1,1,6},{3,1,6}}},{{{1,3,0},{0,3,1}},{{1,3,0},{1,1,0}},{{1,3,0},{1,5,0}},{{1,3,0},{3,3,0}}},{{{1,3,6},{0,3,5}},{{1,3,6},{1,1,6}},{{1,3,6},{1,5,6}},{{1,3,6},{3,3,6}}},{{{1,5,0},{0,5,1}},{{1,5,0},{1,3,0}},{{1,5,0},{1,6,1}},{{1,5,0},{3,5,0}}},{{{1,5,6},{0,5,5}},{{1,5,6},{1,3,6}},{{1,5,6},{1,6,5}},{{1,5,6},{3,5,6}}},{{{1,6,1},{0,5,1}},{{1,6,1},{1,5,0}},{{1,6,1},{1,6,3}},{{1,6,1},{3,6,1}}},{{{1,6,3},{0,5,3}},{{1,6,3},{1,6,1}},{{1,6,3},{1,6,5}},{{1,6,3},{3,6,3}}},{{{1,6,5},{0,5,5}},{{1,6,5},{1,5,6}},{{1,6,5},{1,6,3}},{{1,6,5},{3,6,5}}},{{{3,0,1},{1,0,1}},{{3,0,1},{3,0,3}},{{3,0,1},{3,1,0}},{{3,0,1},{5,0,1}}},{{{3,0,3},{1,0,3}},{{3,0,3},{3,0,1}},{{3,0,3},{3,0,5}},{{3,0,3},{5,0,3}}},{{{3,0,5},{1,0,5}},{{3,0,5},{3,0,3}},{{3,0,5},{3,1,6}},{{3,0,5},{5,0,5}}},{{{3,1,0},{1,1,0}},{{3,1,0},{3,0,1}},{{3,1,0},{3,3,0}},{{3,1,0},{5,1,0}}},{{{3,1,6},{1,1,6}},{{3,1,6},{3,0,5}},{{3,1,6},{3,3,6}},{{3,1,6},{5,1,6}}},{{{3,3,0},{1,3,0}},{{3,3,0},{3,1,0}},{{3,3,0},{3,5,0}},{{3,3,0},{5,3,0}}},{{{3,3,6},{1,3,6}},{{3,3,6},{3,1,6}},{{3,3,6},{3,5,6}},{{3,3,6},{5,3,6}}},{{{3,5,0},{1,5,0}},{{3,5,0},{3,3,0}},{{3,5,0},{3,6,1}},{{3,5,0},{5,5,0}}},{{{3,5,6},{1,5,6}},{{3,5,6},{3,3,6}},{{3,5,6},{3,6,5}},{{3,5,6},{5,5,6}}},{{{3,6,1},{1,6,1}},{{3,6,1},{3,5,0}},{{3,6,1},{3,6,3}},{{3,6,1},{5,6,1}}},{{{3,6,3},{1,6,3}},{{3,6,3},{3,6,1}},{{3,6,3},{3,6,5}},{{3,6,3},{5,6,3}}},{{{3,6,5},{1,6,5}},{{3,6,5},{3,5,6}},{{3,6,5},{3,6,3}},{{3,6,5},{5,6,5}}},{{{5,0,1},{3,0,1}},{{5,0,1},{5,0,3}},{{5,0,1},{5,1,0}},{{5,0,1},{6,1,1}}},{{{5,0,3},{3,0,3}},{{5,0,3},{5,0,1}},{{5,0,3},{5,0,5}},{{5,0,3},{6,1,3}}},{{{5,0,5},{3,0,5}},{{5,0,5},{5,0,3}},{{5,0,5},{5,1,6}},{{5,0,5},{6,1,5}}},{{{5,1,0},{3,1,0}},{{5,1,0},{5,0,1}},{{5,1,0},{5,3,0}},{{5,1,0},{6,1,1}}},{{{5,1,6},{3,1,6}},{{5,1,6},{5,0,5}},{{5,1,6},{5,3,6}},{{5,1,6},{6,1,5}}},{{{5,3,0},{3,3,0}},{{5,3,0},{5,1,0}},{{5,3,0},{5,5,0}},{{5,3,0},{6,3,1}}},{{{5,3,6},{3,3,6}},{{5,3,6},{5,1,6}},{{5,3,6},{5,5,6}},{{5,3,6},{6,3,5}}},{{{5,5,0},{3,5,0}},{{5,5,0},{5,3,0}},{{5,5,0},{5,6,1}},{{5,5,0},{6,5,1}}},{{{5,5,6},{3,5,6}},{{5,5,6},{5,3,6}},{{5,5,6},{5,6,5}},{{5,5,6},{6,5,5}}},{{{5,6,1},{3,6,1}},{{5,6,1},{5,5,0}},{{5,6,1},{5,6,3}},{{5,6,1},{6,5,1}}},{{{5,6,3},{3,6,3}},{{5,6,3},{5,6,1}},{{5,6,3},{5,6,5}},{{5,6,3},{6,5,3}}},{{{5,6,5},{3,6,5}},{{5,6,5},{5,5,6}},{{5,6,5},{5,6,3}},{{5,6,5},{6,5,5}}},{{{6,1,1},{5,0,1}},{{6,1,1},{5,1,0}},{{6,1,1},{6,1,3}},{{6,1,1},{6,3,1}}},{{{6,1,3},{5,0,3}},{{6,1,3},{6,1,1}},{{6,1,3},{6,1,5}},{{6,1,3},{6,3,3}}},{{{6,1,5},{5,0,5}},{{6,1,5},{5,1,6}},{{6,1,5},{6,1,3}},{{6,1,5},{6,3,5}}},{{{6,3,1},{5,3,0}},{{6,3,1},{6,1,1}},{{6,3,1},{6,3,3}},{{6,3,1},{6,5,1}}},{{{6,3,3},{6,1,3}},{{6,3,3},{6,3,1}},{{6,3,3},{6,3,5}},{{6,3,3},{6,5,3}}},{{{6,3,5},{5,3,6}},{{6,3,5},{6,1,5}},{{6,3,5},{6,3,3}},{{6,3,5},{6,5,5}}},{{{6,5,1},{5,5,0}},{{6,5,1},{5,6,1}},{{6,5,1},{6,3,1}},{{6,5,1},{6,5,3}}},{{{6,5,3},{5,6,3}},{{6,5,3},{6,3,3}},{{6,5,3},{6,5,1}},{{6,5,3},{6,5,5}}},{{{6,5,5},{5,5,6}},{{6,5,5},{5,6,5}},{{6,5,5},{6,3,5}},{{6,5,5},{6,5,3}}}}
Công việc tạo các điểm trên mỗi khía cạnh bên ngoài được thực hiện bởi hàm , h
. Nó phải được gọi 3 lần để tạo các điểm tại x = 0, x = 6; y = 0, y = 6; và z = 0, z = 6.
Mỗi điểm khía cạnh là một khoảng cách Manhattan của 2 đơn vị từ một đơn vị khác sẽ được kết nối với điểm tương ứng.
Chúng ta có thể hiển thị các cạnh đồ thị một cách trực quan bằng cách sau đây; a
là danh sách các cạnh đồ thị được biểu diễn dưới đây dưới dạng mũi tên.
Graphics3D[{Arrowheads[.02],Arrow/@a},Boxed->False,Axes-> True]
Dưới đây cho thấy khối Rubik, các điểm trên các mặt bên ngoài và 8 cạnh đồ thị.
Các chấm đỏ nằm trên các mặt tại y = 0 và y = 6; các chấm màu xanh và xám lần lượt nằm trên các mặt tại x = 6 và x = 0; các chấm đen nằm trên các mặt tại z = 6 và z = 0.