Một uốn khúc lấp đầy lưới là một đường dẫn khép kín truy cập vào mọi ô của ô vuông ít nhất một lần, không bao giờ vượt qua bất kỳ cạnh nào giữa các ô liền kề nhiều lần và không bao giờ vượt qua chính nó. Ví dụ:
Sau khi điền, mỗi ô của lưới có thể được biểu thị bằng một trong 8 ô sau:
Được đánh số theo cách này, các ô của phần uốn khúc trên có thể được biểu diễn bằng ma trận này:
5 6 5 6
4 8 3 2
5 7 6 2
4 3 4 3
Nhiệm vụ của bạn là hoàn thành một vòng quanh lấp đầy lưới được cung cấp một bộ gạch không hoàn chỉnh. Ví dụ: phần uốn khúc không hoàn chỉnh:
... có thể được biểu diễn bằng 0
s cho các ô bị thiếu:
5 0 0 0 6
0 0 7 0 0
0 0 0 0 3
2 4 0 0 0
0 0 3 0 0
... có thể được hoàn thành như thế này:
...I E:
5 6 5 1 6
4 8 7 6 2
5 7 7 7 3
2 4 8 8 6
4 1 3 4 3
Thông số kỹ thuật
- Đầu vào sẽ luôn có ít nhất và nhiều nhất là các ô (không trống), trong đó .
- Bạn có thể sử dụng bất kỳ bộ giá trị nào để thể hiện các ô, miễn là nó được chỉ định trong câu trả lời của bạn.
- Đầu vào và đầu ra của bạn có thể ở bất kỳ định dạng và thứ tự nào, miễn là nó được chỉ định trong câu trả lời của bạn.
- Ít nhất một giải pháp hợp lệ sẽ tồn tại cho tất cả các đầu vào (nghĩa là bạn không cần xử lý đầu vào không hợp lệ).
- Quy tắc I / O tiêu chuẩn được áp dụng.
- Sơ hở tiêu chuẩn bị cấm.
- Giải thích, ngay cả đối với các ngôn ngữ "thực tế", được khuyến khích.
Các trường hợp thử nghiệm
Đầu vào ( Θ ):
0 6 0 0
Đầu ra ( Θ ):
5 6 4 3
Đầu vào ( Θ ):
5 6 5 6 4 0 3 2 5 7 6 2 4 3 4 3
Đầu ra ( Θ ):
5 6 5 6 4 8 3 2 5 7 6 2 4 3 4 3
Đầu vào ( Θ ):
5 0 0 0 6 0 0 7 0 0 0 0 0 0 3 2 4 0 0 0 0 0 3 0 0
Đầu ra ( Θ ):
5 6 5 1 6 4 8 7 6 2 5 7 7 7 3 2 4 8 8 6 4 1 3 4 3