Bộ giải cây gia đình


22

Đây là một trong một số thử thách dành cho cộng đồng bởi Sở thích của Calvin .

Lấy tệp "mô tả cây gia đình" với các dòng có dạng:

[ID] [mother ID] [father ID] [gender] [full name]

chẳng hạn như cái này mô tả cây gia đình đầu tiên tại http://en.wikipedia.org/wiki/Cousin :

1 ? ? M Adam
2 ? ? F Agatha
3 ? ? M Bill
4 2 1 F Betty
5 2 1 M Charles
6 ? ? F Corinda
7 3 4 M David
8 6 5 F Emma

Viết chương trình hoặc chức năng lấy tên tệp và hai ID và đưa ra cách những người đó có liên quan đến máu theo cách đơn giản nhất, sử dụng tên tiếng Anh phổ biến cho quan hệ. Đầu vào có thể thông qua STDIN, ARGV hoặc đối số hàm nhưng đầu ra phải là STDOUT.

Ghi chú

  • ID là số nguyên dương.
  • ? được sử dụng khi không biết nguồn gốc.
  • Giả sử đồ thị sẽ được kết nối và không có chu kỳ.
  • Bạn có thể không cho rằng cha mẹ của mỗi người được liệt kê trước người đó (vì vậy ID cha mẹ của một người có thể lớn hơn ID của chính họ).
  • Giả sử tất cả mọi người là nam hoặc nữ và mọi người đều có chính xác một người mẹ và chính xác một người cha (đúng giới tính), mặc dù họ có thể không biết.
  • Giả sử tên là duy nhất.
  • Tên có thể có không gian trong đó.

Quan hệ huyết thống

Các định nghĩa sau đây của các mối quan hệ R xác định xem người MộtR hoặc người B . Nếu hai biến thể của R được liệt kê, người đầu tiên là dành cho nữ Một và thứ hai cho nam Một . Tất cả những điều này cần phải được thực hiện. Nếu nhiều định nghĩa khớp, định nghĩa trước sẽ được sử dụng. Các thuật ngữ trong ngoặc đơn là các thuật ngữ trung lập về giới, không cần phải được thực hiện nhưng sẽ được sử dụng lại trong các định nghĩa tiếp theo. Trong các định nghĩa liên quan đến NM , giả sử N> 1M> 0 .

  • con gái / con trai: A liệt kê B là cha hoặc mẹ.
  • mẹ / cha (cha mẹ): B liệt kê A là cha hoặc mẹ.
  • chị / em trai (anh chị em): AB liệt kê cùng một mẹ cha.
  • chị cùng cha khác mẹ / anh cùng cha khác mẹ (anh chị em): AB liệt kê cùng một người mẹ hoặc cùng cha khác mẹ / anh cùng cha khác người cha giống nhau.
  • cháu gái / cháu trai: A liệt kê một phụ huynh là anh chị em của B .
  • dì / chú: BA cháu gái hoặc cháu trai của
  • cháu gái / cháu trai (cháu): A liệt kê một phụ huynh liệt kê B là cha mẹ của họ.
  • bà / ông (ông bà): B là cháu của A.
  • lớn-cháu gái / lớn-cháu trai: Một là cháu của C là người anh chị em ruột của B .
  • dì / dì vĩ đại: B là cháu gái hoặc cháu chắt của A.
  • cháu chắt / con trai (cháu chắt thứ 1): A là cháu của C , người liệt kê B là cha mẹ của chúng.
  • bà cố / cha (bà cố thứ 1): B là cháu chắt thứ nhất của A.
  • Cháu gái / con trai thứ N (Cháu lớn thứ N): A là cháu (N-1) của C , người liệt kê B là cha mẹ của chúng.
  • Thứ n bà cố / cha (thứ n great-grandparent): BA 's thứ n lớn-cháu.
  • Thứ n lớn-cháu gái / cháu trai: Một là (N-1) lần thứ lớn-cháu của C là người anh chị em ruột của B .
  • Thứ n lớn-dì / chú: BA 's thứ n lớn-cháu gái của thứ n lớn-cháu.
  • anh em họ: Một là cháu của C là người ông bà của B .
  • Thứ n anh em họ: Một là (N-1) lần thứ cháu của C là người (N-1) lần thứ ông bà của B .
  • anh em họ, M lần loại bỏ: Một là cháu của C là người ông bà MTH của B hoặc A là cháu MTH của C là người ông bà của B .
  • Anh em họ thứ N, M lần loại bỏ: Một là PTH lớn-cháu của C là người q great-grandparent B , nơi N = min(P,Q) + 1M = |P-Q|.

Cho Nth, ghi 2nd, 3rd, 4th,5th , vv

Cho M times, ghi once, twice, thrice, 4 times,5 times , vv

Ví dụ

Giả sử tệp sau được sử dụng (bạn không phải xử lý nhiều khoảng trắng, nhưng tôi đã thêm chúng cho mức độ dễ đọc):

 1  ?  ? F Agatha
 2  ?  ? M Adam
 3  ?  ? F Betty
 4  1  2 M Bertrand
 5  1  2 F Charlotte
 6  ?  ? M Carl
 7  ?  ? F Daisy
 8  3  4 M David
 9  5  6 F Emma
10  ?  ? M Edward
11  ?  ? F Freya
12  7  8 M Fred
13  9 10 F Grace
14  ?  ? M Gerald
15  ?  ? F Hillary
16 11 12 M Herbert
17 13 14 F Jane
18  ?  ? M James
19 15 16 F Kate
20 17 18 M Larry
21  ? 18 F Mary

Sau đó, ID đầu vào sẽ ánh xạ tới đầu ra như sau:

 1  2 --> Agatha is not a blood relative to Adam.
 8  3 --> David is the son of Betty.
 9 13 --> Emma is the mother of Grace.
 4  5 --> Bertrand is the brother of Charlotte.
 9  4 --> Emma is the niece of Bertrand.
 5  8 --> Charlotte is the aunt of David.
16  7 --> Herbert is the grandson of Daisy.
 1  9 --> Agatha is the grandmother Emma.
12  5 --> Fred is the great-nephew of Charlotte.
 4 13 --> Bertrand is the great-uncle of Grace.
16  3 --> Herbert is the great-grandson of Betty.
 6 17 --> Carl is the great-grandfather of Jane.
19  2 --> Kate is the 3rd great-granddaughter of Adam.
 1 17 --> Agatha is the 2nd great-grandmother of Jane.
20  4 --> Larry is the 3rd great-nephew of Bertrand.
 5 16 --> Charlotte is the 2nd great-aunt of Herbert.
 8  9 --> David is the cousin of Emma.
19 20 --> Kate is the 4th cousin of Larry.
16  9 --> Herbert is the cousin, twice removed, of Emma.
12 17 --> Fred is the 2nd cousin, once removed, of Jane.
21 20 --> Mary is the half-sister of Larry.

Tôi đã viết chúng lên bằng tay để cho tôi biết nếu bạn phát hiện ra bất kỳ sai lầm nào.

Một bộ dữ liệu thử nghiệm khác (do Scott Leadley cung cấp, bất kỳ lỗi nào là của tôi chứ không phải của Martin)
Cây gia đình Ptolemy Cây gia đình Ptolemy
Hình ảnh mang tính minh họa; dữ liệu dưới đây xuất phát từ bài viết trên Wikipedia " Triều đại Ptolemaic ".

 1  ?  ? F Berenice I of Egypt
 2  ?  ? M Ptolemy I Soter
41  1  2 F Arsinoe II of Egypt
 3  1  2 M Ptolemy II Philadelphus
 4  ?  ? F Arsinoe I of Egypt
 5  ?  ? M Philip
 6  4  3 M Ptolemy III Euergetes
 7  1  5 F Magas of Cyrene
 8  7  ? F Berenice II
 9  8  6 M Ptolemy IV Philopator
10  8  6 F Arsinoe III of Egypt
11 10  9 M Ptolemy V Epiphanes
12  ?  ? F Cleopatra I of Egypt
13 12 11 M Ptolemy VI Philometor
14 12 11 F Cleopatra II
15 12 11 M Ptolemy VIII Physcon
19  ?  ? F Eirene
16 14 13 M Ptolemy VII Neos Philopator
17 14 13 F Cleopatra III
18 14 15 M Ptolemy Memphites
20 19 15 M Ptolemy Apion
21 17 15 F Cleopatra IV
22 17 15 M Ptolemy IX Lathyros
23 17 15 F Cleopatra Selene I
24 17 15 M Ptolemy X Alexander I
25 23 22 F Berenice III of Egypt
26 23 24 M Ptolemy XI Alexander II
27 21 22 M Ptolemy XII Auletes
28 25 24 F Cleopatra V of Egypt
29 28 27 F Cleopatra VI of Egypt
30 28 27 F Berenice IV of Egypt
31 28 27 M Ptolemy XIII Theos Philopator
32 28 27 F Cleopatra VII Thea Philopator
33 28 27 M Ptolemy XIV
34 28 27 F Arsinoe IV of Egypt
35  ?  ? M Julius Caesar
37 32 35 M Ptolemy XV Caesarion
36  ?  ? M Mark Anthony
38 32 36 M Alexander Helios
39 32 36 M Ptolemy XVI Philadelphus
40 32 36 F Cleopatra Selene II

Câu trả lời:


3

Bản thảo 6, 886

Chia cho số 0 là một điều tuyệt vời.

Điều này sử dụng một nửa chữ một lần (không được triển khai trong Firefox 33 hoặc node.js, nhưng sẵn trong các bản dựng hàng đêm của Firefox). Các nghĩa đen được sử dụng:

`
`

có thể được thay thế bằng "\n"nếu bất cứ điều gì bạn đang sử dụng thiếu hỗ trợ cho những điều này.

Kịch bản này xây dựng một cây từ danh sách người, lưu trữ cả cha mẹ và con cái. Mọi đường dẫn từ người A đến người B đều được thử và đường dẫn tối ưu được lưu. Một đường dẫn được coi là hợp lệ nếu nó chỉ thay đổi từ đi lên xuống cây một lần. Thay đổi ngược lại là không được phép - nếu một người cần phải đi xuống một đứa trẻ và sao lưu cho một phụ huynh khác để tìm một con đường, hai người không phải là người thân máu thịt. ( UUUUUDDDcó giá trị,UUDUUU không phải. Ucó nghĩa là đi lên (với cha mẹ),D có nghĩa là đi xuống (với một đứa trẻ)).

Sắp xếp môn đánh gôn:

R=(a,b)=>{F="forEach",C='';p=[],g=[],c={},n=[],e=m=1/0;y=i=>i+(k=i%10,k&&k<4&&~~(i%100/10)-1?[,'st ','nd ','rd '][k]:'th ');q=(a,b,s,$)=>!($=$.slice())|!a|~$.indexOf(a)||a-b&&$.push(a)|[p,c][F]((M,N)=>M[a][F](j=>q(j,b,s+N,$)))||(z=(s.match(/0/g)||[]).length,r=s.length-z,_=e+m-z-r,s.indexOf(10)<0&_>0|!_&m>r&&(e=z,m=r));I.split(`
`)[F](V=>{P=V.split(' ');D=+P[0];p[D]=[+P[1],+P[2]];g[D]=P[3]<'L';n[D]=P.slice(4).join(' ');c[D]=[]});p[F]((V,I)=>V[F](Y=>Y&&c[Y].push(I)));q(a,b,C,[]);U=e>m?m:e,V=e>m?e:m;alert(n[a]+' is '+(e/m+1?'the '+(U*V---1?U<2?(V<3?C:y(V-1))+(V<2?C:'great-')+(V*!U?'grand':C)+'son0father0nephew0uncle0daughter0mother0niece0aunt'.split(0)[g[a]*4+2*U+(U==e)]:(V-=--U,(U<2?C:y(U))+'cousin'+(V?', '+(V>3?V+' times':[,'on','twi','thri'][V]+'ce')+' removed,':C)):(p[a].join()==p[b].join()?C:'half-')+(g[a]?'sister':'brother'))+' of ':'not a blood relative to ')+n[b]+'.')}

Ungolfed (loại):

// function for running.
R=(a,b)=>{
F="forEach",C='';
p=[], g=[], c={}, n=[], e=m=1/0;
// returns suffixed number (1->1st, 2->2nd, etc)
y= i=>i+(k=i%10,k&&k<4&&~~(i%100/10)-1?[,'st ','nd ','rd '][k]:'th ');
// this looks for the shortest path up/down the family tree between a and b.
q=(a,b,s,$)=>
  // copy the array of visited people
  !($=$.slice())
  // check if a is invalid
  | !a
  // check to make sure we are not visiting a for a second time
  | ~$.indexOf(a)
  // if a != b
  || a-b 
  // add a to visited, and call q(...) on all parents and children
  && $.push(a) |
   [p,c][F]((M,N)=>M[a][F](j=>q(j,b,s+N,$)))
  || (
    // a == b
    // get number of ups and downs
    z=(s.match(/0/g)||[]).length,
    r=s.length-z,

    _=e+m-z-r,
    // if DU: path is invalid.
    // if _>0: path is shorter
    // if _==0: check m > r to see if new path should replace old 
    s.indexOf(10)<0 & _>0|!_&m>r && (e=z,m=r));
// load list of people into arrays
I.split(`
`)[F](V=>{
  P=V.split(' ');
  // ID
  D=+P[0];
  // parents: NaN if not given
  p[D]=[+P[1],+P[2]];
  // gender: 1 if female, 0 if male
  g[D]=P[3]<'L';
  // merge the rest of the array to get name
  n[D]=P.slice(4).join(' ');
  // empty children array..for now
  c[D]=[]
});
// push current ID to parents' children array.
p[F]((V,I)=>V[F](Y=>Y&&c[Y].push(I)));

// get shortest path
q(a,b,C,[]);

U=e>m?m:e,V=e>m?e:m;
G=(a,b,c,d)=>(a<3?C:y(a-1))+(a<2?C:'great-')+(a*!b?'grand':C)+'son0father0nephew0uncle0daughter0mother0niece0aunt'.split(0)[g[d]*4+2*b+(b==c)];


// output
alert(n[a]+' is '+(e/m+1?'the '+(U*V---1?
    U<2?
        G(V,U,e,a)
    :(V-=--U,
     (U<2?C:y(U))+'cousin'+
     (V?
        ', '+(V>3?V+' times':[,'on','twi','thri'][V]+'ce')+' removed,'
     :C)
     )
:(p[a].join()==p[b].join()?C:'half-')+(g[a]?'sister':'brother'))+' of ':'not a blood relative to ')+n[b]+'.')
}

Ghi chú:

  • Danh sách những người nên được đặt trong một biến I (dưới dạng một chuỗi, với các khoảng trắng và dòng mới).
  • Để gọi : R(a,b), nơi ablà ID của hai người được so sánh.

5

Rắn hổ mang - 932

Trong tất cả các thử thách tôi đã trả lời trong Cobra, đây là một trong những ví dụ tốt nhất về những gì nó có thể làm.

EDIT: Bây giờ nó là một hàm, nhưng phải được thêm tiền tố bởi chữ ký cho Z (bao gồm trong số char).

sig Z(m,n=nil,r=nil)as String?
def f(f='',u='',v='')
    d={:}
    for l in File.readAllLines(f)
        w=l.trim.split
        i,j,k,p=w[:4]
        q=w[4:].join(' ')
        if i==u,x,g=q,if(p<'M',1,0)
        if i==v,y=q
        d.add(i,[j,k])
    o as Z=do(n,m,r)=if(n>1,"[n][if(0<n%10<4and not 10<n%100<14,'stndrd'[n%10-1:n%10+2],'th')] ",'')
    z as Z=do(m,n,r)
        h,a,b=n
        if m[0]==m[1]
            if if(b<1or 0<b<3and a>b,s=2,s=0),a,b=b,a
            r="the [if(a,if(a<2,if(b<2,if(not'?'in'[c=d[u]][e=d[v]]'and c==e,'','half-')+['brother','sister'][g],if(b<3,'',o(b-2)+'great-')+['uncle','aunt','nephew','neice'][s+g]),o(a-1)+'cousin'+if(b>a,', '+if((b-=a)<4,['on','twi','thri'][b-1]+'ce','[b] times')+' removed,','')),if(b,if(b<3,'',o(b-2)+'great-')+'grand','')+['father','mother','son','daughter'][s+g])] of"
        for t in d[m[h]],if'?'<>h,r?=if(h,z([m[0],t],[1,a,b+1]),z(m,[1,a,0])?z([t,v],[0,a+1,0]))
        return r to String?
    print x+" is [z([u,v],[0,0,0])?'not a blood relative to'] [y]."

Đã nhận xét: (hết hạn, nhưng vẫn cùng một dòng mã)

class F
    # Initilaise link dict
    var d={'?':@[''][:0]}
    # Gender bool
    var g
    def main
        # Initilaise name dict
        d={'?':@[''][:0]}
        # Take args
        f,a,b=CobraCore.commandLineArgs[1:]
        # For line in file
        for l in File.readAllLines(f)
            # Split line
            i=l.split
            # Add links to link dict
            .d.add(i[0],i[1:3])
            # Add names to name dict
            d.add(i[0],i[3:])
        # Get gender
        .g=if(d[a][0]=='F',1,0)
        # Print result
        print _
            '[d[a][1]] is '+ _ # Name A
                .r(@[1,0,0],@[a,a,b,b]) _ # If link found, link
                ? _ # Else
                'not a blood relative'+ _ # Not related
            ' of [d[b][1]].' # Name B
    def r(n as int[],m as String[])as String?
        # Recurse through the links at each level from A (A1), climbing when no links are found to B
        # For each level incremented for A, search upwards to the end of all nodes from B (B1), looking for A1
        r=nil
        # Check if we're done searching/climbing
        if m[1]==m[2]
            a,b=n[1:]
            s=if(b<1or b in[1,2]and a>b,1,0)
            if s,a,b=b,a
            # Take the A and B distance and translate them into a phrase
            return'the '+ _ 
                if(a, _
                    if(a<2, _
                        if(b<2, _
                            if('?'not in'[.d[m[0]]][.d[m[3]]]'and.d[m[0]]==.d[m[3]], _
                                '', _
                                'half-' _
                            )+['brother','sister'][.g], _
                            if(b<3, _
                                '', _
                                .o(b-2)+'great-' _
                            )+[['uncle','aunt'],['nephew','neice']][s][.g] _
                        ), _
                        .o(a-1)+'cousin'+if(b>a, _
                            ', '+if((b-=a)<4, _
                                ['once','twice','thrice'][b-1], _
                                '[b] times' _
                            )+' removed,', _
                            '' _
                        ) _
                    ), _
                    if(b, _
                        if(b<3, _
                            '', _
                            '[.o(b-2)]great-' _
                        )+'grand', _
                        '' _
                    )+[['father','mother'],['son','daughter']][s][.g] _
                )
        # Check if we're climbing
        if n[0]
            # For each link in the current A-level
            for x in.d[m[1]]
                r?= _
                    .r(@[0,n[1],0],m) _ # Start a search
                    ? _ # If the search failed
                    .r(@[1,n[1]+1,0],@[m[0],x,m[3],m[3]]) # Climb again
        # Check if we're searching
        else
            # For each link in the current B-level
            for x in.d[m[2]]
                # Search up one level from the current B-level
                r?=.r(@[0,n[1],n[2]+1],@[m[0],m[1],x,m[3]])
        return r
    def o(n as int)as String
        # Get ordinal string for the number
        return if(n>1,'[n][if(0<n%10<4and not 10<n%100<14,['st','nd','rd'][n%10-1],'th')] ','')

3

C - vô dụng

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

typedef enum {
    MALE,
    FEMALE
} gender_t;

typedef enum {
    VISITED_A,
    VISITED_B,
    NOT_VISITED
} visited_t;

struct node {
    int id;
    int mother;
    int father;
    char *name;
    int height;
    gender_t gender;
    visited_t visited;
};

struct queue_item {
    void *item;
    struct queue_item *next;
    struct queue_item *previous;
};

struct queue {
    struct queue_item *first;
    struct queue_item *last;
};

void queue_push(struct queue *q, struct node *n)
{
    struct queue_item *i = malloc(sizeof(*i));
    i->item = (void *)n;
    i->next = q->last;
    i->previous = NULL;
    q->last = i;
    if(i->next != NULL) {
        i->next->previous = i;
    } else {
        q->first = i;
    }
}

void queue_pop(struct queue *q)
{
    struct queue_item *temp = q->first;
    if(temp) {
        q->first = q->first->previous;
        if(q->first == NULL) {
            q->last = NULL;
        } else {
            q->first->next = NULL;
        }
        free(temp);
    }
}

struct node *queue_front(struct queue *q)
{
    if(q->first) {
        return (struct node *)q->first->item;
    } else {
        return NULL;
    }
}

void queue_free(struct queue *q) {
    while(queue_front(q) != NULL) {
        queue_pop(q);
    }

    free(q);
}

struct node *find_shortest_path(struct node **nodes, struct node *a, struct node *b)
{

    struct queue *q = malloc(sizeof(*q));
    q->first = NULL;
    q->last = NULL;

    a->visited = VISITED_A;
    queue_push(q, a);
    b->visited = VISITED_B;
    queue_push(q, b);

    struct node *n, *father, *mother;

    while((n = queue_front(q)) != NULL) {
        if(n->visited == VISITED_A) {
            if(n->father != 0) {
                father = nodes[n->father-1];
                if(father->visited == VISITED_B) {
                    a->height = n->height + 1;
                    b->height = father->height;
                    n = father;
                    goto exit_queue_free;
                } else  if(father->visited == NOT_VISITED) {
                    father->visited = VISITED_A;
                    father->height = n->height+1;
                    queue_push(q, father);
                }
            }
            if(n->mother != 0) {
                mother = nodes[n->mother-1];
                if(mother->visited == VISITED_B) {
                    a->height = n->height + 1;
                    b->height = mother->height;
                    n = mother;
                    goto exit_queue_free;
                } else  if(mother->visited == NOT_VISITED) {
                    mother->visited = VISITED_A;
                    mother->height = n->height+1;
                    queue_push(q, mother);
                }
            }
        } else if (n->visited == VISITED_B) {
            if(n->father != 0) {
                father = nodes[n->father-1];
                if(father->visited == VISITED_A) {
                    b->height = n->height + 1;
                    a->height = father->height;
                    n = father;
                    goto exit_queue_free;
                } else  if(father->visited == NOT_VISITED) {
                    father->visited = VISITED_B;
                    father->height = n->height+1;
                    queue_push(q, father);
                }
            }
            if(n->mother != 0) {
                mother = nodes[n->mother-1];
                if(mother->visited == VISITED_A) {
                    b->height = n->height + 1;
                    a->height = mother->height;
                    n = mother;
                    goto exit_queue_free;
                } else  if(mother->visited == NOT_VISITED) {
                    mother->visited = VISITED_B;
                    mother->height = n->height+1;
                    queue_push(q, mother);
                }
            }
        }

        queue_pop(q);
    }

exit_queue_free:
    queue_free(q);
    return n;
}

int main(int argc, char *argv[]) {

    if(argc != 4) {
        return -1;
    }

    FILE *file = fopen(argv[1], "r");
    int id_1 = strtol(argv[2], NULL, 0);
    int id_2 = strtol(argv[3], NULL, 0);

    char name[128];
    char id[128];
    char id_father[128];
    char id_mother[128];
    char gender;

    struct queue *read_queue = malloc(sizeof(*read_queue));
    read_queue->first = NULL;
    read_queue->last = NULL;
    int nr_nodes = 0;

    while(fscanf(file, "%s %s %s %c %s",
        id, id_mother, id_father, &gender, name) == 5) {

        struct node *n = malloc(sizeof(*n));
        if(strcmp(id, "?") == 0) {
            n->id = 0;
        } else {
            n->id = strtol(id, NULL, 0);
        }

        if(strcmp(id_mother, "?") == 0) {
            n->mother = 0;
        } else {
            n->mother = strtol(id_mother, NULL, 0);
        }

        if(strcmp(id_father, "?") == 0) {
            n->father = 0;
        } else {
            n->father = strtol(id_father, NULL, 0);
        }

        if(gender == 'M') {
            n->gender = MALE;
        } else {
            n->gender = FEMALE;
        }

        n->name = malloc(strlen(name)+1);

        strcpy(n->name, name);

        n->visited = NOT_VISITED;
        n->height = 0;

        queue_push(read_queue, n);

        nr_nodes++;
    }

    struct node **nodes = malloc(sizeof(*nodes) * nr_nodes);
    struct node *temp;
    while((temp = queue_front(read_queue)) != NULL) {
        nodes[temp->id-1] = temp;
        queue_pop(read_queue);
    }

    queue_free(read_queue);

    struct node *a = nodes[id_1-1], *b = nodes[id_2-1];

    temp = find_shortest_path(nodes, a, b);

    if(temp) {
        if(a->height == b->height) {
            if(a->height == 1) {
                if((a->father == b->father) &&
                    (a->mother == b->mother)) {
                    printf("%s is the %s of %s.\n", a->name,
                        a->gender == MALE ?
                        "brother" : "sister",
                        b->name);
                } else {
                    printf("%s is the half-%s of %s.\n",
                        a->name,
                        a->gender == MALE ?
                        "brother" : "sister",
                        b->name);
                }
            } else if (a->height == 2) {
                printf("%s is the cousin of %s.\n", a->name,
                    b->name);
            } else if (a->height == 3){
                printf("%s is the 2nd cousin of %s.\n", a->name,
                    b->name);
            } else if (a->height == 4) {
                printf("%s is the 3rd cousin of %s.\n", a->name,
                    b->name);
            } else {
                printf("%s is the %dth cousin of %s.\n", a->name,
                    a->height-1,b->name);
            }
        } else if (a->height == 0) {
            if(b->height == 1) {
                printf("%s is the %s of %s.\n", a->name,
                    a->gender == MALE ? "father" :
                    "mother", b->name);
            } else if (b->height == 2) {
                printf("%s is the grand%s of %s.\n", a->name,
                    a->gender == MALE ? "father" :
                    "mother", b->name);
            } else if (b->height == 3) {
                printf("%s is the great-grand%s of %s.\n",
                    a->name, a->gender == MALE ?
                    "father" : "mother", b->name);
            } else if (b->height == 4) {
                printf("%s is the 2nd great-grand%s of %s.\n",
                    a->name, a->gender == MALE ?
                    "father" : "mother", b->name);
            } else if (b->height == 5) {
                printf("%s is the 3rd great-grand%s of %s.\n",
                    a->name, a->gender == MALE ?
                    "father" : "mother", b->name);
            } else if (b->height == 6) {
                printf("%s is the %dth great-grand%s of %s.\n",
                    a->name, b->height-2,
                    a->gender == MALE ? "father" :
                    "mother", b->name);
            }
        } else if (b->height == 0) {
            if(a->height == 1) {
                printf("%s is the %s of %s.\n", a->name,
                    a->gender == MALE ? "son" :
                    "daughter", b->name);
            } else if (a->height == 2) {
                printf("%s is the grand%s of %s.\n", a->name,
                    a->gender == MALE ? "son" :
                    "daughter", b->name);
            } else if (a->height == 3) {
                printf("%s is the great-grand%s of %s.\n",
                    a->name, a->gender == MALE ?
                    "son" : "daughter", b->name);
            } else if (a->height == 4) {
                printf("%s is the 2nd great-grand%s of %s.\n",
                    a->name, a->gender == MALE ?
                    "son" : "daughter", b->name);
            } else if (a->height == 5) {
                printf("%s is the 3rd great-grand%s of %s.\n",
                    a->name, a->gender == MALE ?
                    "son" : "daughter", b->name);
            } else {
                printf("%s is the %dth great-grand%s of %s.\n",
                    a->name, a->height - 2,
                    a->gender == MALE ? "son" :
                    "daughter", b->name);
            }
        } else if (a->height == 1) {
            if(b->height == 2) {
                printf("%s is the %s of %s.\n", a->name,
                    a->gender == MALE ? "uncle" :
                    "aunt", b->name);
            } else if(b->height == 3) {
                printf("%s is the great-%s of %s.\n", a->name,
                    a->gender == MALE ? "uncle" :
                    "aunt", b->name);
            } else if(b->height == 4) {
                printf("%s is the 2nd great-%s of %s.\n", a->name,
                    a->gender == MALE ? "uncle" :
                    "aunt", b->name);
            } else if(b->height == 5) {
                printf("%s is the 3rd great-%s of %s.\n", a->name,
                    a->gender == MALE ? "uncle" :
                    "aunt", b->name);
            } else {
                printf("%s is the %dth great-%s of %s.\n",
                    a->name, b->height - 2,
                    a->gender == MALE ? "uncle" :
                    "aunt", b->name);
            }
        } else if (b->height == 1) {
            if(a->height == 2) {
                printf("%s is the %s of %s.\n", a->name,
                    a->gender == MALE ? "nephew" :
                    "niece", b->name);
            } else if(a->height == 3) {
                printf("%s is the great-%s of %s.\n", a->name,
                    a->gender == MALE ? "nephew" :
                    "niece", b->name);
            } else if(a->height == 4) {
                printf("%s is the 2nd great-%s of %s.\n", a->name,
                    a->gender == MALE ? "nephew" :
                    "niece", b->name);
            } else if(a->height == 5) {
                printf("%s is the 3rd great-%s of %s.\n", a->name,
                    a->gender == MALE ? "nephew" :
                    "niece", b->name);
            } else {
                printf("%s is the %dth great-%s of %s.\n",
                    a->name, a->height - 2,
                    a->gender == MALE ? "nephew" :
                    "niece", b->name);
            }
        } else {
            int m = a->height > b->height ? a->height - b->height :
                b->height - a->height;
            int n = a->height > b->height ? b->height - 1:
                a->height - 1;

            printf("%s is the ", a->name);
            if(n == 2) printf("2nd ");
            if(n == 3) printf("3rd ");
            if(n > 3) printf("%dth ", n);
            printf(" cousin, ");
            if (m == 1) printf("once");
            if (m == 2) printf("twice");
            if (m == 3) printf("thrice");
            if (m > 3) printf("%d times", m);
            printf(" removed, of %s.\n", b->name);
        }
    } else
        printf("%s is not a blood relative to %s.\n", a->name, b->name);



    int i;
    for(i = 0; i < nr_nodes; i++) {
        free(nodes[i]->name);
        free(nodes[i]);
    }

    free(nodes);

    fclose(file);

    return 0;
}

Đó có phải là một triển khai của Thuật toán đường dẫn ngắn nhất của Dijkstra ẩn ở giữa không?
Scott Leadley

Vâng, đó là con đường ngắn nhất của Dijkstra. Nó bắt đầu một phiên bản Dijkstra tại a và một tại b và chấm dứt khi cả hai tìm kiếm gặp nhau.
Optokopper

3

Hồng ngọc - 1892 1290 1247

Chạy như ruby relation.rb ID1 ID2 relationship_file .

P=Struct.new(:i,:m,:f,:s,:n,:c)
def f u,v,w,x,y,z
t=[y,z,v]
return t if v=='?'||x.include?(v)||v==w
r=x+[v];p=u[v]
p.c.each{|o|s=f(u,o,w,r,y,z+1);return s if s.last==w}
return t if z>0
[:m,:f].each{|i|s=f(u,p[i],w,r,y+1,z);return s if s.last==w}
t;end
def g j,a,r,b;puts"#{j[a].n} is the #{r} of #{j[b].n}.";end
def k n;n<2?'':n<3?'2nd':n<4?'3rd':"#{n}th";end
def h n;n<2?'':n<3?'great-':"#{k(n-1)} great-";end
def e n;s=n<2?'once':n<3?'twice':n<4?'thrice':"#{n} times";", #{s} removed,";end
def d u,a,b,x;y,z=x
if y==1&&z==1
w=u[a];v=u[b]
g(u,a,((w.f==v.f&&w.m==v.m)?'':'half-')+((w.s=='F')?'sister':'brother'),b)
elsif y<1||z<1
t=[y,z].max
g(u,a,h(t-1)+(t>=2?'grand':'')+(u[a].s=='F'?y>0?'daughter':'mother':y>0?'son':'father'),b)
elsif y==1||z==1
t=[y,z].max
g(u,a,h(t-1)+(u[a].s=='F'?y==1?'aunt':'niece':y==1?'uncle':'nephew'),b)
else
s=[y,z].min
g(u,a,(s-1>1?"#{k(s-1)} ":'')+'cousin'+((y==z)?'':e((z-y).abs)),b)
end;end
A,B=$*.shift(2);j={}
ARGF.each_line{|l|a=l.scan(/\s*(\d+)\s+(\d+|\?)\s+(\d+|\?)\s+([MF])\s+([\w\s]*\w+)\s*/).flatten;j[a[0]]=P.new(a[0],a[1],a[2],a[3],a[4],[])}
j.each{|k,i|[:f,:m].each{|l|j[i[l]].c<<k if i[l]!='?'}}
a=f(j,A,B,[],0,0)
if a.pop==B
d(j,A,B,a)
else
puts"#{j[A].n} is not a blood relative to #{j[B].n}."

Phiên bản Ungolfed - 5251 3416 (cùng một cây gọi, vừa thực hiện nhiều thao tác gấp mã)

Person = Struct.new( :id, :mother, :father, :sex, :name, :children )

#       Find a path between "start" and "finish". To reflect human consanguinity
# rules, either travel down through descendants or up through ancestors with a
# possible down leg through their descendants.
#
# Use depth-first search until forced to improve.
# If start up, path allowed one inflection point.
# Once start down, path must continue down.
# returns [stepsUp, stepsDown, trialResult],
#   shortest path found if trialResult == finish
def findRelationship(people, start, finish, pathSoFar, stepsUp, stepsDown)
  trialResult = [stepsUp, stepsDown, start]
  #     Return success or failure.
  return trialResult if start == '?' || pathSoFar.include?(start) || start == finish
  #     If success or failure not known, explore further.
  pathNext = pathSoFar + [start]
  person = people[start]
  #     Follow descendants.
  person[:children].each do |child|
    trial = findRelationship(people, child, finish, pathNext, stepsUp, stepsDown+1)
    return trial  if trial.last == finish
  end
  #     Already past inflection point?
  return trialResult  if stepsDown > 0
  #     Follow ancestry.
  [:mother, :father].each do |parent|
    trial = findRelationship(people, person[parent], finish, pathNext, stepsUp+1, stepsDown)
    return trial  if trial.last == finish
  end
  return trialResult
end

def printRelationship(people, a, relationship, b)
  puts "#{people[a][:name]} is the #{relationship} of #{people[b][:name]}."
end

def formatNth(n)
  return n<2?'':n<3?'2nd':n<4?'3rd':"#{n}th"
end

def formatGenerations(n)
  return n<2?'':n<3?'great-':"#{formatNth(n-1)} great-"
end

def formatRemoves(n)
  s=n<2?'once':n<3?'twice':n<4?'thrice':"#{n} times"
  return ", #{s} removed,"
end

def describeRelationship(people, a, b, legLengths)
  down = legLengths.pop
  up = legLengths.pop
  if up==1 && down==1
    who = people[a]
    what = people[b]
    printRelationship(people, a,
        (who[:father] == what[:father]  &&  who[:mother] == what[:mother] ? '' : 'half-') +
          ((who[:sex] == 'F') ? 'sister' : 'brother'),
        b)
  elsif up<1 || down<1
    pathLength = [up, down].max
    printRelationship(people, a,
        formatGenerations(pathLength-1) + ((pathLength>=2) ? 'grand' : '') +
          (up>0 ?
            people[a][:sex] == 'F' ? 'daughter' : 'son'  :
            people[a][:sex] == 'F' ? 'mother': 'father'
          ),
        b)
  elsif up==1 || down==1
    pathLength = [up, down].max
    printRelationship(people, a,
        formatGenerations(pathLength-1) +
          (up==1 ?
            people[a][:sex] == 'F' ? 'aunt': 'uncle'  :
            people[a][:sex] == 'F' ? 'niece': 'nephew'
          ),
        b)
  else
    shortestLeg = [up, down].min
    printRelationship(people, a,
        (shortestLeg-1>1 ? "#{formatNth(shortestLeg-1)} " : '') +
          'cousin' +
          (up==down ? '' : formatRemoves((down-up).abs)),
        b)
  end
end

A = $*.shift
B = $*.shift
#       Meet and greet.
people = {}
ARGF.each_line do |line|
  a = line.scan(/\s*(\d+)\s+(\d+|\?)\s+(\d+|\?)\s+([MF])\s+([\w\s]*\w+)\s*/).flatten
  people[a[0]] = Person.new( a[0], a[1], a[2], a[3], a[4], [] )
end
#       Build lineage.
people.each do |key, individual|
  [:father, :mother].each do |l|
      people[individual[l]][:children] << key  if individual[l] != '?'
  end
end
#       How are A and B related?
a = findRelationship(people, A, B, [], 0, 0)
if a.pop == B
  describeRelationship(people, A, B, a)
else
  puts "#{people[A][:name]} is not a blood relative to #{people[B][:name]}."
end

Vượt qua bộ thử nghiệm sau:

#!/usr/bin/env perl
#
use strict;
use warnings;
require File::Temp;
use File::Temp qw( tempfile tempdir );

use Test::More qw(no_plan);
# use Test::More tests => 38;


#       solution executable
my $solver='ruby relation.rb';


#       "happy" path
my $dir = tempdir( CLEANUP => 1 );
my ($fh, $filename) = tempfile( DIR => $dir );
my $testData = <<'END_TEST_DATA';
 1  ?  ? F Agatha
 2  ?  ? M Adam
 3  ?  ? F Betty
 4  1  2 M Bertrand
 5  1  2 F Charlotte
 6  ?  ? M Carl
 7  ?  ? F Daisy
 8  3  4 M David
 9  5  6 F Emma
10  ?  ? M Edward
11  ?  ? F Freya
12  7  8 M Fred
13  9 10 F Grace
14  ?  ? M Gerald
15  ?  ? F Hillary
16 11 12 M Herbert
17 13 14 F Jane
18  ?  ? M James
19 15 16 F Kate
20 17 18 M Larry
21  ? 18 F Mary
END_TEST_DATA
print $fh  $testData;
close($fh);

is( `$solver 1  2 $filename 2>&1`, "Agatha is not a blood relative to Adam.\n", 'OP example #1,  1  2');
is( `$solver 8 3 $filename 2>&1`, "David is the son of Betty.\n", 'OP example #2,  8  3');
is( `$solver 9 13 $filename 2>&1`, "Emma is the mother of Grace.\n", 'OP example #3,  9 13');
is( `$solver 4 5 $filename 2>&1`, "Bertrand is the brother of Charlotte.\n", 'OP example #4,  4  5');
is( `$solver 9 4 $filename 2>&1`, "Emma is the niece of Bertrand.\n", 'OP example #5,  9  5');
is( `$solver 5 8 $filename 2>&1`, "Charlotte is the aunt of David.\n", 'OP example #6,  5  8');
is( `$solver 16 7 $filename 2>&1`, "Herbert is the grandson of Daisy.\n", 'OP example #7, 16  7');
is( `$solver 1 9 $filename 2>&1`, "Agatha is the grandmother of Emma.\n", 'OP example #8,  1  9 (amended)');
is( `$solver 12 5 $filename 2>&1`, "Fred is the great-nephew of Charlotte.\n", 'OP example #9, 12  5');
is( `$solver 4 13 $filename 2>&1`, "Bertrand is the great-uncle of Grace.\n", 'OP example #10,  4 13');
is( `$solver 16 3 $filename 2>&1`, "Herbert is the great-grandson of Betty.\n", 'OP example #11, 16  3');
is( `$solver 6 17 $filename 2>&1`, "Carl is the great-grandfather of Jane.\n", 'OP example #12,  6 17');
is( `$solver 19 2 $filename 2>&1`, "Kate is the 3rd great-granddaughter of Adam.\n", 'OP example #13, 19  2 (amended)');
is( `$solver 1 17 $filename 2>&1`, "Agatha is the 2nd great-grandmother of Jane.\n", 'OP example #14,  1 17 (amended)');
is( `$solver 20 4 $filename 2>&1`, "Larry is the 3rd great-nephew of Bertrand.\n", 'OP example #15, 20  4');
is( `$solver 5 16 $filename 2>&1`, "Charlotte is the 2nd great-aunt of Herbert.\n", 'OP example #16,  5 16');
is( `$solver 8 9 $filename 2>&1`, "David is the cousin of Emma.\n", 'OP example #17,  8  9');
is( `$solver 19 20 $filename 2>&1`, "Kate is the 4th cousin of Larry.\n", 'OP example #18, 19 20');
is( `$solver 16 9 $filename 2>&1`, "Herbert is the cousin, twice removed, of Emma.\n", 'OP example #19, 16  9');
is( `$solver 12 17 $filename 2>&1`, "Fred is the 2nd cousin, once removed, of Jane.\n", 'OP example #20, 12 17');
is( `$solver 21 20 $filename 2>&1`, "Mary is the half-sister of Larry.\n", 'OP example #21, 21 20');


#       "sad" path
# none!


#       "bad" path
# none!


exit 0;

2

Javascript, 2292

for(var r=prompt().split("\n"),n=[{m:"",f:""}],t=1;t<r.length;t++){var e=r[t].split(" ");n[+e[0]]={m:"?"==e[1]?-1:+e[1],f:"?"==e[2]?-1:+e[2],s:e[3],n:e[4]}}var f=function(r,t){return r=n[r],t=n[t],~r.m&&r.m==t.m&&~r.f&&r.f==t.f?"M"==r.s?"brother":"sister":void 0},i=function(r,t){return r=n[r],t=n[t],~r.m&&r.m==t.m||~r.f&&r.f==t.f?"M"==r.s?"half-brother":"half-sister":void 0},o=function(r){var n=("0"+r).slice(-2),t=n[0];return n=n[1],r+(1==t?"th":1==n?"st":2==n?"nd":3==n?"rd":"th")+" "},a=function(r){return 1==r?"once":2==r?"twice":3==r?"thrice":r+" times"},h=function(r,t){var e,f,i=[t],a=[n[t].m,n[t].f];for(e=0;e<n.length&&!~a.indexOf(r);e++){i=a.slice(),a=[];for(var h=0;h<i.length;h++)i[h]>=0&&a.push(n[i[h]].m,n[i[h]].f)}if(!(e>=n.length))return f="M"==n[r].s?"father":"mother",e>0&&(f="grand"+f),e>1&&(f="great-"+f),e>2&&(f=o(e-1)+f),f},u=function(r,t){var e=h(t,r);return e?e.slice(0,-6)+("M"==n[r].s?"son":"daughter"):void 0},s=function(r){for(var t=[],e=1;e<n.length;e++)f(r,e)&&e!=r&&t.push(e);return t},l=function(r){return r=r.slice(0,-6),""==r?r:"grand"==r?"great ":"great-grand"==r?"2nd great ":o(+r.split(" ")[0].slice(0,-2)+1)+"great "},v=function(r,t){for(var e,f=s(r),i=0;i<f.length&&!(e=h(f[i],t));i++);return e?l(e)+("M"==n[r].s?"uncle":"aunt"):void 0},c=function(r,t){var e=v(t,r);return e?(e.split(" ").slice(0,-1).join(" ")+("M"==n[r].s?" nephew":" niece")).trim():void 0},g=function(r,n){for(var t=0;t<r.length;t++)if(~n.indexOf(r[t]))return!0},m=function(r,t){r=n[r],t=n[t];for(var e=[[r.m,r.f]],f=[[t.m,t.f]],i=0;i<n.length;i++){for(var h=e[i],u=f[i],s=[],l=0;l<h.length;l++){var v=0,c=0;-1!=h[l]&&(v=n[h[l]].m,c=n[h[l]].f),v>0&&s.push(v),c>0&&s.push(c)}for(var m=[],l=0;l<u.length;l++){var v=0,c=0;-1!=u[l]&&(v=n[u[l]].m,c=n[u[l]].f),v>0&&m.push(v),c>0&&m.push(c)}if(!s.length&&!m.length)break;e.push(s),f.push(m)}for(var i=1;i<Math.min(e.length,f.length);i++){var h=e[i],u=f[i];if(g(h,u))return(i>1?o(i):"")+"cousin"}for(var i=1;i<e.length;i++)for(var h=e[i],l=1;l<f.length;l++){var u=f[l];if(g(h,u)){var p=Math.min(i,l);return(p>1?o(p):"")+"cousin, "+a(Math.abs(i-l))+" removed,"}}},e=prompt().split(" "),p=+e[0],d=+e[1],M=u(p,d)||h(p,d)||f(p,d)||i(p,d)||c(p,d)||v(p,d)||m(p,d);alert(n[p].n+" is "+(M?"the "+M+" of ":"not a blood relative to ")+n[d].n+".\n"

Tôi chắc chắn rằng nó có thể được chơi gôn hơn nữa, tất cả những gì tôi đã làm là đưa một phiên bản không được thông qua một công cụ khai thác.

Bạn có thể chạy phiên bản chưa được chỉnh sửa ở đây trên jsFiddle . Đây là đầu ra cho dữ liệu mẫu:

1 2 Agatha is not a blood relative to Adam.
8 3 David is the son of Betty.
9 13 Emma is the mother of Grace.
4 5 Bertrand is the brother of Charlotte.
9 4 Emma is the niece of Bertrand.
5 8 Charlotte is the aunt of David.
16 7 Herbert is the grandson of Daisy.
1 9 Agatha is the grandmother of Emma.
12 5 Fred is the great nephew of Charlotte.
4 13 Bertrand is the great uncle of Grace.
16 3 Herbert is the great-grandson of Betty.
6 17 Carl is the great-grandfather of Jane.
19 1 Kate is the 3rd great-granddaughter of Agatha.
2 17 Adam is the 2nd great-grandfather of Jane.
20 4 Larry is the 3rd great nephew of Bertrand.
5 16 Charlotte is the 2nd great aunt of Herbert.
8 9 David is the cousin of Emma.
19 20 Kate is the 4th cousin of Larry.
16 9 Herbert is the cousin, twice removed, of Emma.
12 17 Fred is the 2nd cousin, once removed, of Jane.
21 20 Mary is the half-sister of Larry.

2

Con trăn 3: 1183

def D(i):
 if i==a:return 0
 r=[D(c)for c in t[i][4]]
 if r:return min(x for x in r if x is not None)+1
def A(i):
 if i=="?":return None
 r=D(i)
 if r is not None:return 0,r
 m,f=map(A,t[i][:2])
 return(f[0]+1,f[1])if not m or(f and sum(f)<sum(m))else(m[0]+1,m[1])if f else None
def P(r):print("%s is %s of %s"%(t[a][3],r,t[b][3]))
O=lambda n:"%d%s "%(n,{2:"nd",3:"rd"}.get(n,"th"))
G=lambda n:(O(n-2)if n>3 else"")+("great-"if n>2 else"")
GG=lambda n:G(n)+("grand"if n>1 else"")
f,a,b=input().split()
t={}
for l in open(f):
 i,m,f,g,n=l.strip().split(maxsplit=4)
 t[i]=(m,f,g,n,[])
for i,(m,f,g,n,c)in t.items():
 if m in t:t[m][4].append(i)
 if f in t:t[f][4].append(i)
g=t[a][2]=="M"
r=A(b)
if r:
 u,d=r
 if u==d==1:P("the "+("half-"if t[s][0]!=t[e][0]or t[s][1]!=t[s][1]else"")+["sister","brother"][g])
 elif u==0:P("the "+GG(d)+["daughter","son"][g])
 elif d==0:P("the "+GG(u)+["mother","father"][g])
 elif u==1:P("the "+G(d)+["niece","nephew"][g])
 elif d==1:P("the "+G(u)+["aunt","uncle"][g])
 else:
  n,m=min(u,d)-1,abs(u-d);P("the "+(O(n)if n>1 else"")+"cousin"+(" %s removed"%{1:"once",2:"twice",3:"thrice"}.get(m,"%d times"%m)if m else""))
else:
 P("not a blood relative")

Tên tệp và ID của những người được mô tả được đọc từ đầu vào tiêu chuẩn trên một dòng.

Phần trên cùng của mã là các định nghĩa hàm. Kịch bản bắt đầu xuống một nửa và đầu tiên hoạt động xử lý đầu vào (phân tích tệp, sau đó gán con cho cha mẹ chúng trong lần thứ hai).

Sau khi dữ liệu được thiết lập, chúng tôi gọi Ahàm một lần để khởi động tìm kiếm đệ quy. Kết quả xác định mối quan hệ.

Phần còn lại của mã được dành riêng để mô tả mối quan hệ đó bằng tiếng Anh. Anh chị em và anh em họ rất phức tạp (và sử dụng các hàng dài), phần còn lại là khá thẳng về phía trước.

Chạy ví dụ (dòng thứ hai là đầu vào của tôi):

C:\>Python34\python.exe relations.py
relations.txt 20 4
Larry is the 3rd great-nephew of Bertrand

Khóa chức năng và tên biến:

  • f: Tên tệp dữ liệu của gia đình được đọc từ.
  • a: Id của người mà chúng tôi đặt tên.
  • b: Id của người mà mối quan hệ được xác định tương đối.
  • t: Bản thân cây gia đình, như một ánh xạ từ điển từ id đến 5 tuple id của mẹ, id của cha, giới tính, tên và danh sách con.
  • g: Giá trị Boolean phản ánh giới tính của người a. Đó là Truenếu họ là một người đàn ông.
  • u: Số lượng thế hệ từ bđến tổ tiên chung của ab(hoặc 0 nếu batổ tiên).
  • d: Số lượng thế hệ từ ađến tổ tiên chung của ab(hoặc 0 nếu abtổ tiên).
  • D(i): Tìm kiếm đệ quy con cháu của người icho người a. Trả lại độ sâu ađã được tìm thấy tại, hoặc Không nếu nó không được tìm thấy.
  • A(i): Tìm kiếm đệ quy iicon cháu của nó, nhưng nếu nó không được tìm thấy đệ quy tìm kiếm itổ tiên (và con cháu của họ) quá. Trả về 2-tuple, giá trị của ai udđược mô tả ở trên. Nếu một mối quan hệ được tìm thấy thông qua cả cha và mẹ, thì mối quan hệ có số bước thế hệ ( u+d) nhỏ nhất sẽ được ưu tiên. Nếu người akhông có quan hệ huyết thống với người i, A(i)trở vềNone .
  • P(r): In chuỗi kết quả được đặt trong rngoặc theo tên của người ab.
  • O(n): Trả về một chuỗi thứ tự cho số đã cho n. Chỉ hỗ trợ 1 < n < 21.
  • G(n): Trả về chuỗi tiền tố tương đương với n-1"vĩ đại" (ví dụ:"2nd great-" n = 2`). Sẽ trả về một chuỗi rỗng cho n <= 1.
  • GG(n): Trả về một chuỗi tiền tố với "Nth great-" và "grand", phù hợp với các nthế hệ. Sẽ trả về một chuỗi rỗng cho n <= 1.

Tôi đã lấy một vài phím tắt trong tên của mã ngắn hơn có thể được sửa đổi để có hiệu suất tốt hơn (hoặc chính xác hơn một chút) trên các phả hệ lớn. Các Achức năng không thực hiện bất kỳ nỗ lực để tránh recursing xuống cây con đó đã được tìm kiếm, mà làm cho nó chậm hơn so với cần thiết (mặc dù có lẽ vẫn đủ nhanh cho các gia đình có kích thước hợp lý). Các Ochức năng không xử lý một cách chính xác ordinals lớn hơn 20 (đó là một chút khó khăn để có được tất cả 11th, 21st101stđúng, nhưng thuộc một trong các bản thảo của tôi, tôi đã làm điều đó trong khoảng 25 byte bổ sung). Trừ khi bạn giao dịch với các gia đình rất lâu đời và nổi tiếng (ví dụ như một số gia đình hoàng gia châu Âu), tôi không chắc chắn tôi tin tưởng vào tính chính xác của một gia phả đã đi xa đến thế.

Mặt khác, tôi cũng đã bỏ qua một vài nơi mà tôi có thể cạo đi một vài byte. Chẳng hạn, tôi có thể lưu 3 byte bằng cách đổi tên GGthành một tên nhân vật, nhưng căn cứ vào tên đó great-grandcó vẻ đáng giá hơn đối với tôi.

Tôi tin rằng tất cả các khoảng trắng trong mã là bắt buộc, nhưng có thể một số có thể bỏ qua và tôi đã bỏ qua chúng (Tôi tiếp tục tìm thấy các khoảng trắng trong danh sách đối số khi tôi gõ câu trả lời này, nhưng tôi nghĩ rằng tôi đã nhận được tất cả chúng bây giờ).

Bởi vì kết hợp đệ quy của tôi yêu cầu một quy tắc tương đối đơn giản để ưu tiên các mối quan hệ nếu có nhiều hơn một, nên tôi không đưa ra chính xác kết quả được yêu cầu trong một số trường hợp mơ hồ liên quan đến loạn luân giữa các thế hệ. Chẳng hạn, nếu acả hai đều blà chú và ông của cả hai người , mã của tôi sẽ thích mối quan hệ ông nội mặc dù câu hỏi nói rằng mối quan hệ chú nên có quyền ưu tiên cao hơn.

Dưới đây là một tập dữ liệu mẫu cho thấy vấn đề:

1 ? ? F Alice
2 1 ? M Bob
3 1 2 F Claire
4 3 ? F Danielle

Tôi nghi ngờ rằng đối với hầu hết các chương trình, mối quan hệ giữa Bob và Claire hoặc giữa Bob và Danielle sẽ gây rắc rối. Họ sẽ gọi cặp anh em cùng cha khác mẹ đầu tiên chứ không phải cha / con gái hoặc họ sẽ mô tả cặp sau là ông / cháu gái chứ không phải là chú / cháu gái. Mã của tôi thực hiện mã sau và tôi không thấy bất kỳ cách hợp lý nào để thay đổi mã để có kết quả được yêu cầu mà không bị sai cặp đầu tiên.


0

Một bộ thử nghiệm. Nhét nó vào t / perspective.t và chạy "prov" hoặc "perl t / perspective.t". Hiện tại nó giả sử tệp chương trình là "quan hệ.rb".

Đó là wiki cộng đồng, vì vậy hãy thoải mái thêm các bài kiểm tra. Nếu bạn thay đổi nó, tôi nghĩ rằng dấu thời gian (hoặc một số cờ rõ ràng khác) sẽ theo thứ tự. Danh sách mong muốn:

  1. một bài kiểm tra "bad boy" sẽ trừng phạt các chiến lược tìm kiếm toàn diện
#
#       S. Leadley, Wed Aug 27 20:08:31 EDT 2014
use strict;
use warnings;
require File::Temp;
use File::Temp qw( tempfile tempdir );

use Test::More qw(no_plan);
# use Test::More tests => 38;


#       solution executable
my $solver='ruby relation.rb';


#       "happy" path
my $dir = tempdir( CLEANUP => 1 );
my ($fh, $filename) = tempfile( DIR => $dir );
my $testData = <<'END_TEST_DATA';
 1  ?  ? F Agatha
 2  ?  ? M Adam
 3  ?  ? F Betty
 4  1  2 M Bertrand
 5  1  2 F Charlotte
 6  ?  ? M Carl
 7  ?  ? F Daisy
 8  3  4 M David
 9  5  6 F Emma
10  ?  ? M Edward
11  ?  ? F Freya
12  7  8 M Fred
13  9 10 F Grace
14  ?  ? M Gerald
15  ?  ? F Hillary
16 11 12 M Herbert
17 13 14 F Jane
18  ?  ? M James
19 15 16 F Kate
20 17 18 M Larry
21  ? 18 F Mary
END_TEST_DATA
print $fh  $testData;
close($fh);

is( `$solver 1  2 $filename 2>&1`, "Agatha is not a blood relative to Adam.\n", 'OP example #1,  1  2');
is( `$solver 8 3 $filename 2>&1`, "David is the son of Betty.\n", 'OP example #2,  8  3');
is( `$solver 9 13 $filename 2>&1`, "Emma is the mother of Grace.\n", 'OP example #3,  9 13');
is( `$solver 4 5 $filename 2>&1`, "Bertrand is the brother of Charlotte.\n", 'OP example #4,  4  5');
is( `$solver 9 4 $filename 2>&1`, "Emma is the niece of Bertrand.\n", 'OP example #5,  9  5');
is( `$solver 5 8 $filename 2>&1`, "Charlotte is the aunt of David.\n", 'OP example #6,  5  8');
is( `$solver 16 7 $filename 2>&1`, "Herbert is the grandson of Daisy.\n", 'OP example #7, 16  7');
is( `$solver 1 9 $filename 2>&1`, "Agatha is the grandmother of Emma.\n", 'OP example #8,  1  9 (amended)');
is( `$solver 12 5 $filename 2>&1`, "Fred is the great-nephew of Charlotte.\n", 'OP example #9, 12  5');
is( `$solver 4 13 $filename 2>&1`, "Bertrand is the great-uncle of Grace.\n", 'OP example #10,  4 13');
is( `$solver 16 3 $filename 2>&1`, "Herbert is the great-grandson of Betty.\n", 'OP example #11, 16  3');
is( `$solver 6 17 $filename 2>&1`, "Carl is the great-grandfather of Jane.\n", 'OP example #12,  6 17');
is( `$solver 19 2 $filename 2>&1`, "Kate is the 3rd great-granddaughter of Adam.\n", 'OP example #13, 19  2 (amended)');
is( `$solver 1 17 $filename 2>&1`, "Agatha is the 2nd great-grandmother of Jane.\n", 'OP example #14,  1 17 (amended)');
is( `$solver 20 4 $filename 2>&1`, "Larry is the 3rd great-nephew of Bertrand.\n", 'OP example #15, 20  4');
is( `$solver 5 16 $filename 2>&1`, "Charlotte is the 2nd great-aunt of Herbert.\n", 'OP example #16,  5 16');
is( `$solver 8 9 $filename 2>&1`, "David is the cousin of Emma.\n", 'OP example #17,  8  9');
is( `$solver 19 20 $filename 2>&1`, "Kate is the 4th cousin of Larry.\n", 'OP example #18, 19 20');
is( `$solver 16 9 $filename 2>&1`, "Herbert is the cousin, twice removed, of Emma.\n", 'OP example #19, 16  9');
is( `$solver 12 17 $filename 2>&1`, "Fred is the 2nd cousin, once removed, of Jane.\n", 'OP example #20, 12 17');
is( `$solver 21 20 $filename 2>&1`, "Mary is the half-sister of Larry.\n", 'OP example #21, 21 20');


#       "sad" path
# none!


#       "bad" path
is( `$solver 1 32 $filename 2>&1`, "person with ID 32 does not exist\n", 'not required, not in the spec');


exit 0;
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.