Java 8, 47.867 thay đổi tổng số.
Sử dụng trung bình của hình ảnh là điểm trung tâm. Sau đó, nó thu hút tất cả các tia có thể vào trung tâm và cho nó bán kính tốt nhất để tô màu. Sau đó, màu sắc tất cả các điểm không hợp lệ màu đen.
import javax.imageio.ImageIO;
import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.util.ArrayList;
import java.util.List;
public class MakeItStarry {
private static final int RGB_RED = Color.RED.getRGB();
static int[][] originalImage;
static final int WHITE = 0;
static final int BLACK = 1;
static final int RGB_WHITE = Color.WHITE.getRGB();
static final int RGB_BLACK = Color.BLACK.getRGB();
static final int RGB_BLUE = Color.BLUE.getRGB();
static final int RGB_YELLOW = Color.YELLOW.getRGB();
public static void main(String[] args) throws Exception{
originalImage = convert(ImageIO.read(new File(args[0])));
Point center = findCenter(originalImage);
int[][] nextImage = starry(originalImage, center);
BufferedImage result = difference(originalImage, nextImage);
result.setRGB(center.x, center.y, RGB_RED);
String fileType;
String fileName;
if (args[1].split("\\.").length > 1){
fileType = args[1].split("\\.")[1];
fileName = args[1];
} else {
fileType = "PNG";
fileName = args[1] + ".PNG";
}
ImageIO.write(result, fileType, new File(fileName));
System.out.println(cost);
}
static int cost;
private static BufferedImage difference(int[][] image1, int[][] image2) {
cost = 0;
int height = image1[0].length;
int width = image1.length;
BufferedImage result = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);
for (int x = 0; x < width; x++){
for (int y = 0; y < width; y++){
if (image1[x][y] == image2[x][y]){
if (image1[x][y] == WHITE){
result.setRGB(x, y, RGB_WHITE);
} else {
result.setRGB(x, y, RGB_BLACK);
}
} else {
cost++;
if (image1[x][y] == WHITE){
result.setRGB(x, y, RGB_BLUE);
} else {
result.setRGB(x, y, RGB_YELLOW);
}
}
}
}
return result;
}
private static int[][] starry(int[][] image, Point center) {
int width = image.length;
int height = image[0].length;
int[][] result = new int[width][height];
for (int x = 0; x < width; x++){
for (int y = 0; y < height; y++){
result[x][y] = BLACK;
}
}
for (int x = 0; x < width; x++){
for (int y = 0; y < height; y++) {
Point endPoint = new Point(x, y, image);
List<Point> line = Point.lineTo(center, endPoint, image);
List<Point> newLine = starRay(line);
newLine.stream().filter(point -> result[point.x][point.y] == BLACK).forEach(point -> {
result[point.x][point.y] = point.color;
});
}
}
int distance = 0;
while (distance < height || distance < width){//This removes pixels that can't see the center.
for (int x = Math.max(center.x - distance,0); x < center.x + distance && x < width; x++){
for (int y = Math.max(center.y - distance, 0); y < center.y + distance && y < height; y++){
Point point = new Point(x, y, result);
if (Point.distance(center, point) != distance){
continue;
}
if (point.color == WHITE){
List<Point> line = Point.lineTo(center, point, result);
for (Point p : line){
if (p.color == BLACK){
point.color = BLACK;
break;
}
}
result[point.x][point.y] = point.color;
}
}
}//All white pixels can technically see the center but only if looking from the edge.
distance++;
}
return result;
}
private static List<Point> starRay(List<Point> line) {
int numOfWhites = 0;
int farthestGoodPoint = 0;
int blackCost = 0;
int whiteCost = 0;
for (int i = 0; i < line.size(); i++){
if (line.get(i).color == WHITE){
numOfWhites++;
whiteCost++;
if (numOfWhites + whiteCost > blackCost){
blackCost = 0;
whiteCost = 0;
farthestGoodPoint = i;
}
} else {
blackCost++;
numOfWhites = 0;
}
}
List<Point> result = new ArrayList<>();
for (int i = 0; i < line.size(); i++){
Point p = line.get(i);
if (i <= farthestGoodPoint){
result.add(new Point(p.x, p.y, WHITE));
} else {
result.add(new Point(p.x, p.y, BLACK));
}
}
return result;
}
private static Point findCenter(int[][] image) {
double totalx = 0;
double totaly = 0;
int counter = 0;
int width = image.length;
int height = image[0].length;
for (int x = 0; x < width; x++){
for (int y = 0; y < height; y++){
if (image[x][y] == WHITE){
totalx += x;
totaly += y;
counter++;
}
}
}
return new Point((int)(totalx/counter), (int)(totaly/counter), image);
}
private static int[][] convert(BufferedImage image) {
int width = image.getWidth();
int height = image.getHeight();
int[][] result = new int[width][height];
for (int x = 0; x < width; x++){
for (int y = 0; y < height; y++){
if (image.getRGB(x, y) == RGB_WHITE){
result[x][y] = WHITE;
} else {
result[x][y] = BLACK;
}
}
}
return result;
}
private static class Point {
public int color;
public int y;
public int x;
public Point(int x, int y, int[][] image) {
this.x = x;
this.y = y;
this.color = image[x][y];
}
public Point(int x, int y, int color) {
this.x = x;
this.y = y;
this.color = color;
}
public static List<Point> lineTo(Point point1, Point point2, int[][] image) {
List<Point> result = new ArrayList<>();
boolean reversed = false;
if (point1.x > point2.x){
Point buffer = point1;
point1 = point2;
point2 = buffer;
reversed = !reversed;
}
int rise = point1.y - point2.y;
int run = point1.x - point2.x;
if (run == 0){
if (point1.y > point2.y){
Point buffer = point1;
point1 = point2;
point2 = buffer;
reversed = !reversed;
}
int x = point1.x;
for (int y = point1.y; y <= point2.y; y++){
result.add(new Point(x, y, image));
}
if (reversed){
return reversed(result);
}
return result;
}
if (rise == 0){
if (point1.x > point2.x){
Point buffer = point1;
point1 = point2;
point2 = buffer;
reversed = !reversed;
}
int y = point1.y;
for (int x = point1.x; x <= point2.x; x++){
result.add(new Point(x, y, image));
}
if (reversed){
return reversed(result);
}
return result;
}
int gcd = gcd(rise, run);
rise /= gcd;
run /= gcd;
double slope = (rise + 0.0) / run;
if (Math.abs(rise) >= Math.abs(run)){
if (point1.y > point2.y){
Point buffer = point1;
point1 = point2;
point2 = buffer;
reversed = !reversed;
}
double x = point1.x;
for (double y = point1.y + .5; y <= point2.y; y++){
int px = (int) Math.round(x);
if (Math.abs(Math.abs(px - x) - .5) < Math.abs(1.0 / (rise * 4))){
x += 1/slope;
continue;
}
result.add(new Point(px, (int) Math.round(y - .5), image));
result.add(new Point(px, (int) Math.round(y + .5), image));
x += 1/slope;
}
if (reversed){
return reversed(result);
}
return result;
} else {
if (point1.x > point2.x){
Point buffer = point1;
point1 = point2;
point2 = buffer;
reversed = !reversed;
}
double y = point1.y;
for (double x = point1.x + .5; x <= point2.x; x++){
int py = (int) Math.round(y);
if (Math.abs(Math.abs(py - y) - .5) < Math.abs(1.0 / (run * 4))) {
y += slope;
continue;
}
result.add(new Point((int) Math.round(x - .5), py, image));
result.add(new Point((int) Math.round(x + .5), py, image));
y += slope;
}
if (reversed){
return reversed(result);
}
return result;
}
}
private static List<Point> reversed(List<Point> points) {
List<Point> result = new ArrayList<>();
for (int i = points.size() - 1; i >= 0; i--){
result.add(points.get(i));
}
return result;
}
private static int gcd(int num1, int num2) {
if (num1 < 0 && num2 < 0){
return -gcd(-num1, -num2);
}
if (num1 < 0){
return gcd(-num1, num2);
}
if (num2 < 0){
return gcd(num1, -num2);
}
if (num2 > num1){
return gcd(num2, num1);
}
if (num2 == 0){
return num1;
}
return gcd(num2, num1 % num2);
}
@Override
public String toString(){
return x + " " + y;
}
public static int distance(Point point1, Point point2) {
return Math.abs(point1.x - point2.x) + Math.abs(point1.y - point2.y);
}
}
}
Các kết quả
Hình ảnh 1 - 0 thay đổi, Hình ảnh 2 - 13.698 thay đổi
Hình ảnh 3 - 24.269 thay đổi, Hình ảnh 4 - 103 thay đổi
Hình ảnh 5 - 5.344 thay đổi, Hình ảnh 6 - 4.456 thay đổi
Không có pixel không hợp lệ bị xóa, tổng số 42.782 thay đổi
Pixel màu xanh lá cây là lớp đầu tiên của pixel không hợp lệ.
Hình ảnh 1 - 0 thay đổi, Hình ảnh 2- 9,889 thay đổi
Hình ảnh 3 - 24.268 thay đổi, Hình ảnh 4 - 103 thay đổi
Hình ảnh 5 - 4.471 thay đổi, Hình ảnh 6- 4.050 thay đổi
Tất cả các pixel trắng trong tất cả các hình ảnh có thể có một đường được vẽ cho chúng từ pixel trung tâm nếu đường đó không phải xuất phát / kết thúc tại tâm mà thay vào đó là bất cứ nơi nào trên pixel.
args[0]
chứa tên tập tin đầu vào.
args[1]
chứa tên tập tin đầu ra.
In theo stdout
số lượng thay đổi.