Rev 1: Ruby, 354 byte
chơi gôn hơn nữa nhờ blutorange.
->a{t=s=Math::PI/18E4
d=r=c=0
a=a.map{|e|e-a[0]}
0.upto(36E4){|i|b=a.map{|e|(e/Complex.polar(1,i*s)).rect}.transpose
m,n=b
if n.min>=f=0
l=[m.max-x=m.min,n.max].max
a.each_index{|j|f+=((l-w=n[j])*(x+l-v=m[j])*(x-v)*w)**2}
(1E-9>q=f/l**8)&&(c>0&&(i-d)%9E4%89E3>1E3?c=9E9:0;c+=1;d=i)
q<t&&(r=i)&&t=q;end}
c<101&&a[1]?c<1?'impossible':r%9E4/1.0E3:'unknown'}
Ruby, 392 byte
->(a){
s=Math::PI/18E4
t=1
d=r=c=0
a=a.map{|e|e-a[0]}
(0..36E4).each{|i|
b=a.map{|e|(e/Complex.polar(1,i*s)).rect}.transpose
m=b[0]
n=b[1]
x=m.min
if n.min>=0
l=[m.max-x,n.max].max
f=0
a.each_index{|j|f+=((l-n[j])*(x+l-m[j])*(x-m[j])*n[j])**2}
q=f/l**8
if q<1E-9
c>0&&(i-d)%9E4%89E3>1E3?(c=9E9):0
c+=1
d=i
end
if q<t
r=i
t=q
end
end
}
c>100||a.size<2?'unknown':c<1? 'impossible':r%9E4/1.0E3
}
Thuật toán như sau:
-Nhấp một điểm tùy ý (điểm đầu tiên) và di chuyển điểm đó đến điểm gốc (trừ tọa độ của điểm này khỏi tất cả các điểm trong danh sách.)
Hãy thử tất cả các góc quay của hình vuông về gốc tọa độ tăng 0,001 độ, qua 360 độ.
-Đối với một phép quay cho trước, nếu tất cả các điểm nằm trên trục y, hãy vẽ hình vuông nhỏ nhất có thể xung quanh tất cả các điểm, kết hợp điểm thấp nhất và ngoài cùng bên trái.
-Kiểm tra nếu tất cả các điểm nằm trên cạnh. Điều này được thực hiện với một phép tính mềm lấy từng điểm, tìm khoảng cách bình phương từ tất cả các cạnh và nhân chúng lại với nhau. Điều này cho một sự phù hợp tốt hơn là một câu trả lời có / không. Nó được giải thích rằng một giải pháp được tìm thấy nếu sản phẩm này chia cho độ dài ^ 8 nhỏ hơn 1E-9. Trong thực tế điều này là ít hơn một mức độ khoan dung.
-Phân hợp tốt nhất được lấy mod 90 độ và báo cáo là góc chính xác.
Hiện tại mã trả về giá trị không rõ ràng nếu tìm thấy hơn 100 giải pháp (ở độ phân giải 0,001 độ. Đó là 0,1 độ dung sai.)
chức năng làm việc đầy đủ đầu tiên, trong chương trình thử nghiệm
Tôi để độ phân giải ở mức 1/10 của độ phân giải cần thiết để làm cho tốc độ hợp lý. Có một lỗi suy giảm 0,01 trên trường hợp thử nghiệm cuối cùng.
g=->(a){
s=Math::PI/18000
t=1
d=r=-1
c=0
a=a.map{|e| e-a[0]}
(0..36000).each{|i|
b=a.map{|e|(e/Complex.polar(1,i*s)).rect}.transpose
m=b[0]
n=b[1]
x=m.min
if n.min>=0
l=[m.max-x,n.max].max
f=0
a.each_index{|j|f+=((l-n[j])*(x+l-m[j])*(x-m[j])*n[j])**2}
q=f/l**8
if q<1E-9
j=(i-d)%9000
c>0&&j>100&&j<8900?(c=9E9):0
c+=1
d=i
end
if q<t
r=i
t=q
end
end
}
print "t=",t," r=",r," c=",c," d=",d,"\n"
p c>100||a.size<2?'unknown':c<1? 'impossible':r%9000/100.0
}
#ambiguous
#g.call([Complex(0,0)])
#g.call([Complex(0,0),Complex(1,0)])
#g.call([Complex(0,0),Complex(1,0),Complex(0,1)])
#g.call([Complex(0,0),Complex(1,0),Complex(0,1),Complex(1,1)])
#g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,3),Complex(2,0),Complex(2,3),Complex(3,1),Complex(3,2)])
#impossible
#g.call([Complex(0,0),Complex(1,0),Complex(2,0),Complex(3,1),Complex(4,2)])
#g.call([Complex(0,0),Complex(1,0),Complex(2,0),Complex(1,1)])
#g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,3),Complex(2,0),Complex(2,3),Complex(3,1),Complex(3,2),Complex(2,2)])
#g.call([Complex(2,0),Complex(0,1),Complex(2,2),Complex(0,3)])
#g.call([Complex(0,0),Complex(2,1),Complex(0,2),Complex(2,2),Complex(-1,1)])
#possible
g.call([Complex(0,0),Complex(1,0),Complex(2,0)])
g.call([Complex(0,0),Complex(0.3,0.3),Complex(0.6,0.6)]) #(should return 45)
g.call([Complex(0,0),Complex(0.1,0.2),Complex(0.2,0.4)]) #(should return appx 63.435 (the real value is arctan(2)))
g.call([Complex(0,0),Complex(0,1),Complex(2,1),Complex(2,2)])
g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,4),Complex(2,0),Complex(2,4),Complex(4,1),Complex(4,3)])
phiên bản golf, độ phân giải tuân thủ thông số kỹ thuật, mất khoảng một phút cho mỗi cuộc gọi, trong chương trình thử nghiệm.
Vẫn còn một lỗi đáng tiếc 0,001 độ trong trường hợp thử nghiệm cuối cùng. Tăng độ phân giải hơn nữa có thể sẽ loại bỏ nó.
g=->(a){ #take an array of complex numbers as input
s=Math::PI/18E4 #step size PI/180000
t=1 #best fit found so far
d=r=c=0 #angles of (d) last valid result, (r) best fit; c= hit counter
a=a.map{|e|e-a[0]} #move shape so that first point coincides with origin
(0..36E4).each{|i| #0..360000
b=a.map{|e|(e/Complex.polar(1,i*s)).rect}.transpose #rotate each element by dividing by unit vector of angle i*s, convert to array...
m=b[0] #...transpose array [[x1,y1]..[xn,yn]] to [[x1..xn],[y1..yn]]...
n=b[1] #...and assign to variables m and n
x=m.min #find leftmost point
if n.min>=0 #if all points are above x axis
l=[m.max-x,n.max].max #find the sidelength of smallest square in which they will fit
f=0 #f= accumulator for errors. For each point
a.each_index{|j|f+=((l-n[j])*(x+l-m[j])*(x-m[j])*n[j])**2} #...add to f the product of the squared distances from each side of the smallest square containing all points
q=f/l**8 #q= f normalized with respect to the sidelength.
if q<1E-9 #consider a hit if <1E-9
c>0&&(i-d)%9E4%89E3>1E3?(c=9E9):0 #if at least one point is already found, and the difference between this hit and the last exceeds+/-1 deg (mod 90), set c to a high value
c+=1 #increment hit count by 1 (this catches infinitely varible cases)
d=i #store the current hit in d
end
if q<t #if current fit is better than previous one
r=i #store the new angle
t=q #and revise t to the new best fit.
end
end
}
c>100||a.size<2?'unknown':c<1? 'impossible':r%9E4/1.0E3 #calculate and return value, taking special care of case where single point given.
}
#ambiguous
puts g.call([Complex(0,0)])
puts g.call([Complex(0,0),Complex(1,0)])
puts g.call([Complex(0,0),Complex(1,0),Complex(0,1)])
puts g.call([Complex(0,0),Complex(1,0),Complex(0,1),Complex(1,1)])
puts g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,3),Complex(2,0),Complex(2,3),Complex(3,1),Complex(3,2)])
#impossible
puts g.call([Complex(0,0),Complex(1,0),Complex(2,0),Complex(3,1),Complex(4,2)])
puts g.call([Complex(0,0),Complex(1,0),Complex(2,0),Complex(1,1)])
puts g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,3),Complex(2,0),Complex(2,3),Complex(3,1),Complex(3,2),Complex(2,2)])
puts g.call([Complex(2,0),Complex(0,1),Complex(2,2),Complex(0,3)])
puts g.call([Complex(0,0),Complex(2,1),Complex(0,2),Complex(2,2),Complex(-1,1)])
#possible
puts g.call([Complex(0,0),Complex(1,0),Complex(2,0)])
puts g.call([Complex(0,0),Complex(0.3,0.3),Complex(0.6,0.6)]) #(should return 45)
puts g.call([Complex(0,0),Complex(0.1,0.2),Complex(0.2,0.4)]) #(should return appx 63.435 (the real value is arctan(2)))
puts g.call([Complex(0,0),Complex(0,1),Complex(2,1),Complex(2,2)])
puts g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,4),Complex(2,0),Complex(2,4),Complex(4,1),Complex(4,3)])
Lưu ý rằng để có thêm 30% mã, thuật toán này có thể được điều chỉnh để hoạt động nhanh: rõ ràng là trong trường hợp có số lượng giải pháp hữu hạn, một trong các cạnh nằm dọc theo một khối lập phương, vì vậy tất cả những gì chúng ta thực sự phải thử là những góc đó tương ứng với từng cặp đỉnh. Cũng cần phải làm một chút ngọ nguậy để kiểm tra xem không có vô số giải pháp.