Xếp chồng tam giác Pythagore


23

Lý lịch

Một tam giác Pythagore là một tam giác vuông trong đó mỗi chiều dài là một số nguyên (nghĩa là các độ dài cạnh tạo thành một tam giác Pythagore ):

Tam giác Pythagore

Sử dụng các cạnh của tam giác này, chúng ta có thể đính kèm thêm hai tam giác Pythagore không đồng dạng như sau:

Tam giác xếp 1

Chúng ta có thể tiếp tục với mẫu này khi chúng ta thấy phù hợp, miễn là không có hai hình tam giác trùng nhau và các cạnh kết nối có độ dài bằng nhau:

nhập mô tả hình ảnh ở đây

Câu hỏi là, có bao nhiêu hình tam giác Pythagore không đồng dạng chúng ta có thể phù hợp trong một không gian nhất định?

Đầu vào

Bạn sẽ nhận được hai số nguyên làm đầu vào WH, thông qua các đối số hàm, STDIN, chuỗi hoặc bất cứ thứ gì bạn thích. Các số nguyên có thể được nhận dưới dạng thập phân, thập lục phân, nhị phân, đơn nguyên (chúc may mắn, Retina ) hoặc bất kỳ cơ sở số nguyên nào khác. Bạn có thể cho rằng max(W, H) <= 2^15 - 1.

Đầu ra

Chương trình hoặc hàm của bạn nên tính toán một danh sách các tam giác Pythagore không được kết nối không trùng nhau và đưa ra một danh sách gồm ba tọa độ mỗi tọa độ, trong đó các tọa độ trong một tập hợp tạo thành một trong các tam giác Pythagore khi được kết nối bằng các đường. Các tọa độ phải là số thực trong không gian của chúng ta ( xphải nằm trong khoảng [0, W]yphải nằm trong khoảng [0, H]) và khoảng cách phải chính xác với độ chính xác của máy. Thứ tự của các hình tam giác và định dạng chính xác của mỗi tọa độ không quan trọng.

Phải có khả năng "đi bộ" từ tam giác này sang bất kỳ tam giác nào khác chỉ bước qua các ranh giới được kết nối.

Sử dụng sơ đồ ở trên là một ví dụ, chúng ta hãy đầu vào của chúng tôi được W = 60, H = 60.

Đầu ra của chúng tôi sau đó có thể là danh sách tọa độ sau:

(0, 15), (0, 21), (8, 15)
(0, 21), (14.4, 40.2), (8, 15)
(0, 15), (8, 0), (8, 15)
(8, 0), (8, 15), (28, 15)
(8, 15), (28, 15), (28, 36)
(28, 15), (28, 36), (56, 36)

Bây giờ, 6 hình tam giác chắc chắn không phải là tốt nhất chúng ta có thể làm cho không gian của chúng tôi. Bạn có thể làm tốt hơn không?

Quy tắc và chấm điểm

  • Điểm của bạn cho thử thách này là số lượng tam giác mà chương trình của bạn tạo ra cho đầu vào là W = 1000, H = 1000. Tôi bảo lưu quyền thay đổi đầu vào này nếu tôi nghi ngờ ai đó đang giải mã trường hợp này.

  • Bạn không được sử dụng các phần tử tính toán ba lần Pythagore và bạn không thể mã hóa danh sách nhiều hơn 2 bộ ba Pythagore (nếu bạn mã hóa chương trình của mình để luôn bắt đầu bằng một tam giác (3, 4, 5) hoặc một số trường hợp bắt đầu tương tự, không sao)

  • Bạn có thể viết trình của bạn bằng bất kỳ ngôn ngữ. Khả năng đọc và bình luận được khuyến khích.

  • Bạn có thể tìm thấy một danh sách các bộ ba Pythagore ở đây .

  • Lỗ hổng tiêu chuẩn không được phép.


Chúng ta có thể sử dụng nhiều hơn một thể hiện của cùng một tam giác trong không gian không?
DavidC

1
@DavidCarraher Không có hai hình tam giác được tạo bởi chương trình của bạn có thể đồng dạng với nhau.
BrainSteel

3

Vấn đề này đòi hỏi rất nhiều tính toán, phải không? Đặc biệt vì đây là một vấn đề đóng gói.
Renae Lider

1
@KeithRandall Chúng tương tự nhau, không đồng dạng.
Geobits

Câu trả lời:


16

Trăn 3, 109

Đây chắc chắn là một thử thách khó khăn. Đã nhiều lần viết mã mà tôi thấy mình nghi ngờ khả năng hình học cơ bản của mình. Điều đó đang được nói, tôi khá hài lòng với kết quả. Tôi không nỗ lực để đưa ra một thuật toán phức tạp để đặt các hình tam giác, và thay vào đó, mã của tôi chỉ bị sai lệch thông qua việc luôn đặt cái nhỏ nhất mà nó có thể tìm thấy. Tôi hy vọng tôi có thể cải thiện điều này sau này, hoặc câu trả lời của tôi sẽ từ chối người khác để tìm ra một thuật toán tốt hơn! Tất cả trong tất cả, một vấn đề rất thú vị, và nó tạo ra một số hình ảnh thú vị.

Đây là mã:

import time
import math

W = int(input("Enter W: "))
H = int(input("Enter H: "))

middle_x = math.floor(W/2)
middle_y = math.floor(H/2)

sides = [ # each side is in the format [length, [x0, y0], [x1, y1]]
    [3,[middle_x,middle_y],[middle_x+3,middle_y]],
    [4,[middle_x,middle_y],[middle_x,middle_y+4]],
    [5,[middle_x+3,middle_y],[middle_x,middle_y+4]]
    ]

triangles = [[0,1,2]] # each triangle is in the format [a, b, c] where a, b and c are the indexes of sides

used_triangles = [[3,4,5]] # a list of used Pythagorean triples, where lengths are ordered (a < b < c)

max_bounds_length = math.sqrt(W**2 + H**2)

def check_if_pyth_triple(a,b): # accepts two lists of the form [l, [x0,y0], [x1,y1]] defining two line segments
    # returns 0 if there are no triples, 1 if there is a triple with a right angle on a,
    # and 2 if there is a triple with the right angle opposite a
    c = math.sqrt(a[0]**2 + b[0]**2)
    if c.is_integer():
        if not sorted([a[0], b[0], c]) in used_triangles:
            return 1
        return 0
    else:
        if a[0] > b[0]:
            c = math.sqrt(a[0]**2 - b[0]**2)
            if c.is_integer() and not sorted([a[0], b[0], c]) in used_triangles:
                return 2
        return 0

def check_if_out_of_bounds(p):
    out = False
    if p[0] < 0 or p[0] > W:
        out = True
    if p[1] < 0 or p[1] > H:
        out = True
    return out

def in_between(a,b,c):
    maxi = max(a,c)
    mini = min(a,c)
    return mini < b < maxi

def sides_intersect(AB,CD): # accepts two lists of the form [l, [x0,y0], [x1,y1]] defining two line segments
    # doesn't count overlapping lines
    A = AB[1]
    B = AB[2]
    C = CD[1]
    D = CD[2]

    if A[0] == B[0]: # AB is vertical
        if C[0] == D[0]: # CD is vertical
            return False
        else:
            m1 = (C[1] - D[1])/(C[0] - D[0]) # slope of CD
            y = m1*(A[0] - C[0]) + C[1] # the y value of CD at AB's x value
            return in_between(A[1], y, B[1]) and in_between(C[0], A[0], D[0])
    else:
        m0 = (A[1] - B[1])/(A[0] - B[0]) # slope of AB
        if C[0] == D[0]: # CD is vertical
            y = m0*(C[0] - A[0]) + A[1] # the y value of CD at AB's x value
            return in_between(C[1], y, D[1]) and in_between(A[0],C[0],B[0])
        else:
            m1 = (C[1] - D[1])/(C[0] - D[0]) # slope of CD
            if m0 == m1:
                return False
            else:
                x = (m0*A[0] - m1*C[0] - A[1] + C[1])/(m0 - m1)
                return in_between(A[0], x, B[0]) and in_between(C[0], x, D[0])

def check_all_sides(b,triangle):
    no_intersections = True
    for side in sides:
        if sides_intersect(side, b):
            no_intersections = False
            break

    return no_intersections

def check_point_still_has_room(A): # This function is needed for the weird case when all 2pi degrees
    # around a point are filled by triangles, but you could fit in a small triangle into another one
    # already built around the point. Doing this won't cause sides_intersect() to detect it because
    # the sides will all be parallel. Crazy stuff.
    connecting_sides = []
    for side in sides:
        if A in side:
            connecting_sides.append(side)

    match_count = 0
    slopes = []
    for side in connecting_sides:
        B = side[1]
        if A == B:
            B = side[2]
        if not A[0] == B[0]:
            slope = round((A[1]-B[1])/(A[0]-B[0]),4)
        else:
            if A[1] < B[1]:
                slope = "infinity"
            else:
                slope = "neg_infinity"
        if slope in slopes:
            match_count -= 1
        else:
            slopes.append(slope)
            match_count += 1

    return match_count != 0

def construct_b(a,b,pyth_triple_info,straight_b_direction,bent_b_direction):
    # this function finds the correct third point of the triangle given a and the length of b
    # pyth_triple_info determines if a is a leg or the hypotenuse
    # the b_directions determine on which side of a the triangle should be formed
    a_p = 2 # this is the index of the point in a that is not the shared point with b
    if a[1] != b[1]:
        a_p = 1

    vx = a[a_p][0] - b[1][0] # v is our vector, and these are the coordinates, adjusted so that
    vy = a[a_p][1] - b[1][1] # the shared point is the origin

    if pyth_triple_info == 1:
        # because the dot product of orthogonal vectors is zero, we can use that and the Pythagorean formula
        # to get this simple formula for generating the coordinates of b's second point
        if vy == 0:
            x = 0
            y = b[0]
        else:
            x = b[0]/math.sqrt(1+((-vx/vy)**2)) # b[0] is the desired length
            y = -vx*x/vy

        x = x*straight_b_direction # since the vector is orthagonal, if we want to reverse the direction,
        y = y*straight_b_direction # it just means finding the mirror point

    elif pyth_triple_info == 2: # this finds the intersection of the two circles of radii b[0] and c 
        # around a's endpoints, which is the third point of the triangle if a is the hypotenuse
        c = math.sqrt(a[0]**2 - b[0]**2)
        D = a[0]
        A = (b[0]**2 - c**2 + D**2 ) / (2*D)
        h = math.sqrt(b[0]**2 - A**2)
        x2 = vx*(A/D)
        y2 = vy*(A/D)        
        x = x2 + h*vy/D
        y = y2 - h*vx/D

        if bent_b_direction == -1: # this constitutes reflection of the vector (-x,-y) around the normal vector n,
            # which accounts for finding the triangle on the opposite side of a
            dx = -x
            dy = -y
            v_length = math.sqrt(vx**2 + vy**2)
            nx = vx/v_length
            ny = vy/v_length

            d_dot_n = dx*nx + dy*ny

            x = dx - 2*d_dot_n*nx
            y = dy - 2*d_dot_n*ny

    x = x + b[1][0] # adjust back to the original frame
    y = y + b[1][1]

    return [x,y]

def construct_triangle(side_index):
    a = sides[side_index] # a is the base of the triangle
    a_p = 1
    b = [1, a[a_p], []] # side b, c is hypotenuse

    for index, triangle in enumerate(triangles):
        if side_index in triangle:
            triangle_index = index
            break

    triangle = list(triangles[triangle_index])
    triangle.remove(side_index)

    add_tri = False

    straight_b = construct_b(a,b,1,1,1)

    bent_b = construct_b(a,b,2,1,1)

    A = sides[triangle[0]][1]
    if A in a:
        A = sides[triangle[0]][2]

    Ax = A[0] - b[1][0] # adjusting A so that it's a vector
    Ay = A[1] - b[1][1]

    # these are for determining if construct_b() is going to the correct side
    triangle_on_side = (a[2][0]-a[1][0])*(A[1]-a[1][1]) - (a[2][1]-a[1][1])*(A[0]-a[1][0])
    straight_b_on_side = (a[2][0]-a[1][0])*(straight_b[1]-a[1][1]) - (a[2][1]-a[1][1])*(straight_b[0]-a[1][0])
    bent_b_on_side = (a[2][0]-a[1][0])*(bent_b[1]-a[1][1]) - (a[2][1]-a[1][1])*(bent_b[0]-a[1][0])

    straight_b_direction = 1
    if (triangle_on_side > 0 and straight_b_on_side > 0) or (triangle_on_side < 0 and straight_b_on_side < 0):
        straight_b_direction = -1

    bent_b_direction = 1
    if (triangle_on_side > 0 and bent_b_on_side > 0) or (triangle_on_side < 0 and bent_b_on_side < 0):
        bent_b_direction = -1


    a_ps = []
    for x in [1,2]:
        if check_point_still_has_room(a[x]): # here we check for that weird exception
            a_ps.append(x)

    while True:
        out_of_bounds = False
        if b[0] > max_bounds_length:
            break

        pyth_triple_info = check_if_pyth_triple(a,b)

        for a_p in a_ps:
            if a_p == 1: # this accounts for the change in direction when switching a's points
                new_bent_b_direction = bent_b_direction
            else:
                new_bent_b_direction = -bent_b_direction

            b[1] = a[a_p]
            if pyth_triple_info > 0:
                b[2] = construct_b(a,b,pyth_triple_info,straight_b_direction,new_bent_b_direction)

                if check_if_out_of_bounds(b[2]): # here is the check to make sure we don't go out of bounds
                    out_of_bounds = True
                    break

                if check_all_sides(b,triangle):
                    if pyth_triple_info == 1:
                        c = [math.sqrt(a[0]**2 + b[0]**2), a[3-a_p], b[2]]
                    else:
                        c = [math.sqrt(a[0]**2 - b[0]**2), a[3-a_p], b[2]]

                    if check_all_sides(c,triangle):
                        add_tri = True
                        break

        if out_of_bounds or add_tri:
            break

        b[0] += 1 # increment the length of b every time the loop goes through

    if add_tri: # this adds a new triangle
        sides.append(b)
        sides.append(c)
        sides_len = len(sides)
        triangles.append([side_index, sides_len - 2, sides_len - 1])
        used_triangles.append(sorted([a[0], b[0], c[0]])) # so we don't use the same triangle again

def build_all_triangles(): # this iterates through every side to see if a new triangle can be constructed
    # this is probably where real optimization would take place so more optimal triangles are placed first
    t0 = time.clock()

    index = 0
    while index < len(sides):
        construct_triangle(index)
        index += 1

    t1 = time.clock()

    triangles_points = [] # this is all for printing points
    for triangle in triangles:
        point_list = []
        for x in [1,2]:
            for side_index in triangle:
                point = sides[side_index][x]
                if not point in point_list:
                    point_list.append(point)
        triangles_points.append(point_list)

    for triangle in triangles_points:
        print(triangle)

    print(len(triangles), "triangles placed in", round(t1-t0,3), "seconds.")

def matplotlib_graph(): # this displays the triangles with matplotlib
    import pylab as pl
    import matplotlib.pyplot as plt
    from matplotlib import collections as mc

    lines = []
    for side in sides:
        lines.append([side[1],side[2]])

    lc = mc.LineCollection(lines)
    fig, ax = pl.subplots()
    ax.add_collection(lc)
    ax.autoscale()
    ax.margins(0.1)
    plt.show()

build_all_triangles()

Dưới đây là biểu đồ đầu ra cho W = 1000H = 1000với 109 hình tam giác: Đồ thị của các hình tam giác được vẽ với matplotlib

Đây là W = 10000H = 10000với 724 hình tam giác: Đồ thị của các hình tam giác được vẽ với matplotlib

Gọi matplotlib_graph()hàm sau build_all_triangles()để vẽ đồ thị các tam giác.

Tôi nghĩ rằng mã chạy khá nhanh: W = 1000H = 1000mất 0,66 giây W = 10000H = 10000mất 45 giây khi sử dụng máy tính xách tay xảo quyệt của tôi.


Tôi thực sự cần phải có được giải pháp của tôi kết thúc. Tôi đã ở khá xa trong vài tuần trước, nhưng chưa bao giờ hoàn thành nó. Đó thực sự là khá nhiều công việc! Đặc biệt với các bài kiểm tra giao nhau, và làm cho chúng hoạt động đúng cho các trường hợp thoái hóa. Tôi nghĩ rằng tôi biết cách tiếp cận nào tôi muốn sử dụng cho điều đó, nhưng đó là phần tôi chưa hoàn thành.
Reto Koradi

1
Wow, đây là một giải pháp đầu tiên tuyệt vời! Tôi đặc biệt thích các biểu đồ. Tôi rất vui vì bạn thích thử thách này và tôi hy vọng bạn sẽ tham gia PPCG!
BrainSteel

Đó có lẽ là hình ảnh hỗn loạn nhất mà tôi từng thấy
Beta Decay

16

C ++, 146 hình tam giác (phần 1/2)

Kết quả như hình ảnh

Kết quả

Mô tả thuật toán

Điều này sử dụng một tìm kiếm đầu tiên của không gian giải pháp. Trong mỗi bước, nó bắt đầu với tất cả các cấu hình ktam giác duy nhất vừa vặn trong hộp và xây dựng tất cả các cấu hình k + 1tam giác duy nhất bằng cách liệt kê tất cả các tùy chọn thêm một tam giác không sử dụng vào bất kỳ cấu hình nào.

Thuật toán về cơ bản được thiết lập để tìm mức tối đa tuyệt đối với BFS toàn diện. Và nó làm điều đó thành công cho kích thước nhỏ hơn. Ví dụ: đối với hộp 50x50, nó tìm thấy tối đa trong khoảng 1 phút. Nhưng đối với 1000x1000, không gian giải pháp là quá lớn. Để cho phép nó chấm dứt, tôi cắt danh sách các giải pháp sau mỗi bước. Số lượng các giải pháp được giữ được đưa ra bởi một đối số dòng lệnh. Đối với giải pháp trên, giá trị 50 đã được sử dụng. Điều này dẫn đến thời gian chạy khoảng 10 phút.

Các phác thảo của các bước chính trông như thế này:

  1. Tạo tất cả các hình tam giác Pythagore có khả năng nằm gọn trong hộp.
  2. Tạo tập hợp giải pháp ban đầu bao gồm các giải pháp với mỗi tam giác 1.
  3. Vòng lặp qua các thế hệ (đếm tam giác).
    1. Loại bỏ các giải pháp không hợp lệ khỏi bộ giải pháp. Đây là những giải pháp không vừa trong hộp hoặc có sự chồng chéo.
    2. Nếu bộ giải pháp là trống, chúng ta đã hoàn thành. Bộ giải pháp từ thế hệ trước chứa cực đại.
    3. Giải pháp cắt được đặt thành kích thước đã cho nếu tùy chọn cắt được bật.
    4. Lặp lại tất cả các giải pháp trong thế hệ hiện tại.
      1. Vòng lặp trên tất cả các mặt trong chu vi của giải pháp.
        1. Tìm tất cả các hình tam giác có độ dài cạnh khớp với cạnh chu vi và chưa có trong giải pháp.
        2. Tạo các giải pháp mới do việc thêm các hình tam giác và thêm các giải pháp vào bộ giải pháp của thế hệ mới.
  4. Giải pháp in.

Một khía cạnh quan trọng trong toàn bộ sơ đồ là các cấu hình thường sẽ được tạo ra nhiều lần và chúng tôi chỉ quan tâm đến các cấu hình duy nhất. Vì vậy, chúng ta cần một khóa duy nhất xác định một giải pháp, phải độc lập với thứ tự của các tam giác được sử dụng trong khi tạo ra giải pháp. Ví dụ: sử dụng tọa độ cho khóa hoàn toàn không hoạt động, vì chúng có thể hoàn toàn khác nhau nếu chúng tôi đến cùng một giải pháp trong nhiều đơn hàng. Những gì tôi đã sử dụng là tập hợp các chỉ số tam giác trong danh sách toàn cầu, cộng với một tập hợp các đối tượng "trình kết nối" xác định cách các tam giác được kết nối. Vì vậy, khóa chỉ mã hóa cấu trúc liên kết, độc lập với thứ tự và vị trí xây dựng trong không gian 2D.

Trong khi nhiều hơn một khía cạnh thực hiện, một phần khác không hoàn toàn tầm thường là quyết định xem và làm thế nào toàn bộ điều phù hợp với hộp nhất định. Nếu bạn thực sự muốn đẩy các ranh giới, rõ ràng là cần thiết để cho phép xoay để phù hợp với bên trong hộp.

Tôi sẽ thử và thêm một số nhận xét vào mã trong phần 2 sau, trong trường hợp ai đó muốn đi sâu vào chi tiết về cách thức hoạt động của tất cả.

Kết quả ở định dạng văn bản chính thức

(322.085, 641.587) (318.105, 641.979) (321.791, 638.602)
(318.105, 641.979) (309.998, 633.131) (321.791, 638.602)
(318.105, 641.979) (303.362, 639.211) (309.998, 633.131)
(318.105, 641.979) (301.886, 647.073) (303.362, 639.211)
(301.886, 647.073) (297.465, 638.103) (303.362, 639.211)
(301.886, 647.073) (280.358, 657.682) (297.465, 638.103)
(301.886, 647.073) (283.452, 663.961) (280.358, 657.682)
(301.886, 647.073) (298.195, 666.730) (283.452, 663.961)
(301.886, 647.073) (308.959, 661.425) (298.195, 666.730)
(301.886, 647.073) (335.868, 648.164) (308.959, 661.425)
(335.868, 648.164) (325.012, 669.568) (308.959, 661.425)
(308.959, 661.425) (313.666, 698.124) (298.195, 666.730)
(313.666, 698.124) (293.027, 694.249) (298.195, 666.730)
(313.666, 698.124) (289.336, 713.905) (293.027, 694.249)
(298.195, 666.730) (276.808, 699.343) (283.452, 663.961)
(335.868, 648.164) (353.550, 684.043) (325.012, 669.568)
(303.362, 639.211) (276.341, 609.717) (309.998, 633.131)
(276.808, 699.343) (250.272, 694.360) (283.452, 663.961)
(335.868, 648.164) (362.778, 634.902) (353.550, 684.043)
(362.778, 634.902) (367.483, 682.671) (353.550, 684.043)
(250.272, 694.360) (234.060, 676.664) (283.452, 663.961)
(362.778, 634.902) (382.682, 632.942) (367.483, 682.671)
(382.682, 632.942) (419.979, 644.341) (367.483, 682.671)
(419.979, 644.341) (379.809, 692.873) (367.483, 682.671)
(353.550, 684.043) (326.409, 737.553) (325.012, 669.568)
(353.550, 684.043) (361.864, 731.318) (326.409, 737.553)
(353.550, 684.043) (416.033, 721.791) (361.864, 731.318)
(416.033, 721.791) (385.938, 753.889) (361.864, 731.318)
(385.938, 753.889) (323.561, 772.170) (361.864, 731.318)
(385.938, 753.889) (383.201, 778.739) (323.561, 772.170)
(383.201, 778.739) (381.996, 789.673) (323.561, 772.170)
(323.561, 772.170) (292.922, 743.443) (361.864, 731.318)
(323.561, 772.170) (296.202, 801.350) (292.922, 743.443)
(250.272, 694.360) (182.446, 723.951) (234.060, 676.664)
(335.868, 648.164) (330.951, 570.319) (362.778, 634.902)
(330.951, 570.319) (381.615, 625.619) (362.778, 634.902)
(330.951, 570.319) (375.734, 565.908) (381.615, 625.619)
(330.951, 570.319) (372.989, 538.043) (375.734, 565.908)
(323.561, 772.170) (350.914, 852.648) (296.202, 801.350)
(323.561, 772.170) (362.438, 846.632) (350.914, 852.648)
(234.060, 676.664) (217.123, 610.807) (283.452, 663.961)
(217.123, 610.807) (249.415, 594.893) (283.452, 663.961)
(375.734, 565.908) (438.431, 559.733) (381.615, 625.619)
(382.682, 632.942) (443.362, 567.835) (419.979, 644.341)
(443.362, 567.835) (471.667, 606.601) (419.979, 644.341)
(323.561, 772.170) (393.464, 830.433) (362.438, 846.632)
(372.989, 538.043) (471.272, 556.499) (375.734, 565.908)
(372.989, 538.043) (444.749, 502.679) (471.272, 556.499)
(372.989, 538.043) (365.033, 521.897) (444.749, 502.679)
(443.362, 567.835) (544.353, 553.528) (471.667, 606.601)
(544.353, 553.528) (523.309, 622.384) (471.667, 606.601)
(544.353, 553.528) (606.515, 572.527) (523.309, 622.384)
(419.979, 644.341) (484.688, 697.901) (379.809, 692.873)
(444.749, 502.679) (552.898, 516.272) (471.272, 556.499)
(217.123, 610.807) (170.708, 516.623) (249.415, 594.893)
(484.688, 697.901) (482.006, 753.837) (379.809, 692.873)
(484.688, 697.901) (571.903, 758.147) (482.006, 753.837)
(419.979, 644.341) (535.698, 636.273) (484.688, 697.901)
(276.808, 699.343) (228.126, 812.299) (250.272, 694.360)
(228.126, 812.299) (185.689, 726.188) (250.272, 694.360)
(228.126, 812.299) (192.246, 829.981) (185.689, 726.188)
(393.464, 830.433) (449.003, 936.807) (362.438, 846.632)
(393.464, 830.433) (468.505, 926.625) (449.003, 936.807)
(416.033, 721.791) (471.289, 833.915) (385.938, 753.889)
(471.289, 833.915) (430.252, 852.379) (385.938, 753.889)
(350.914, 852.648) (227.804, 874.300) (296.202, 801.350)
(192.246, 829.981) (114.401, 834.898) (185.689, 726.188)
(114.401, 834.898) (155.433, 715.767) (185.689, 726.188)
(217.123, 610.807) (91.773, 555.523) (170.708, 516.623)
(91.773, 555.523) (141.533, 457.421) (170.708, 516.623)
(141.533, 457.421) (241.996, 407.912) (170.708, 516.623)
(141.533, 457.421) (235.365, 394.457) (241.996, 407.912)
(241.996, 407.912) (219.849, 525.851) (170.708, 516.623)
(241.996, 407.912) (304.896, 419.724) (219.849, 525.851)
(91.773, 555.523) (55.917, 413.995) (141.533, 457.421)
(571.903, 758.147) (476.260, 873.699) (482.006, 753.837)
(571.903, 758.147) (514.819, 890.349) (476.260, 873.699)
(571.903, 758.147) (587.510, 764.886) (514.819, 890.349)
(587.510, 764.886) (537.290, 898.778) (514.819, 890.349)
(587.510, 764.886) (592.254, 896.801) (537.290, 898.778)
(587.510, 764.886) (672.455, 761.831) (592.254, 896.801)
(55.917, 413.995) (113.819, 299.840) (141.533, 457.421)
(113.819, 299.840) (149.275, 293.604) (141.533, 457.421)
(544.353, 553.528) (652.112, 423.339) (606.515, 572.527)
(652.112, 423.339) (698.333, 461.597) (606.515, 572.527)
(535.698, 636.273) (651.250, 731.917) (484.688, 697.901)
(651.250, 731.917) (642.213, 756.296) (484.688, 697.901)
(304.896, 419.724) (299.444, 589.636) (219.849, 525.851)
(304.896, 419.724) (369.108, 452.294) (299.444, 589.636)
(304.896, 419.724) (365.965, 299.326) (369.108, 452.294)
(304.896, 419.724) (269.090, 347.067) (365.965, 299.326)
(114.401, 834.898) (0.942, 795.820) (155.433, 715.767)
(114.401, 834.898) (75.649, 947.412) (0.942, 795.820)
(192.246, 829.981) (124.489, 994.580) (114.401, 834.898)
(269.090, 347.067) (205.435, 217.901) (365.965, 299.326)
(205.435, 217.901) (214.030, 200.956) (365.965, 299.326)
(182.446, 723.951) (68.958, 600.078) (234.060, 676.664)
(182.446, 723.951) (32.828, 633.179) (68.958, 600.078)
(652.112, 423.339) (763.695, 288.528) (698.333, 461.597)
(763.695, 288.528) (808.220, 324.117) (698.333, 461.597)
(763.695, 288.528) (811.147, 229.162) (808.220, 324.117)
(652.112, 423.339) (627.572, 321.247) (763.695, 288.528)
(627.572, 321.247) (660.872, 244.129) (763.695, 288.528)
(652.112, 423.339) (530.342, 344.618) (627.572, 321.247)
(652.112, 423.339) (570.488, 453.449) (530.342, 344.618)
(627.572, 321.247) (503.633, 267.730) (660.872, 244.129)
(365.965, 299.326) (473.086, 450.157) (369.108, 452.294)
(365.965, 299.326) (506.922, 344.440) (473.086, 450.157)
(365.965, 299.326) (394.633, 260.827) (506.922, 344.440)
(394.633, 260.827) (537.381, 303.535) (506.922, 344.440)
(811.147, 229.162) (979.067, 234.338) (808.220, 324.117)
(698.333, 461.597) (706.660, 655.418) (606.515, 572.527)
(811.147, 229.162) (982.117, 135.385) (979.067, 234.338)
(982.117, 135.385) (999.058, 234.954) (979.067, 234.338)
(365.965, 299.326) (214.375, 186.448) (394.633, 260.827)
(811.147, 229.162) (803.145, 154.590) (982.117, 135.385)
(803.145, 154.590) (978.596, 102.573) (982.117, 135.385)
(214.375, 186.448) (314.969, 126.701) (394.633, 260.827)
(314.969, 126.701) (508.984, 192.909) (394.633, 260.827)
(314.969, 126.701) (338.497, 88.341) (508.984, 192.909)
(338.497, 88.341) (523.725, 138.884) (508.984, 192.909)
(338.497, 88.341) (359.556, 11.163) (523.725, 138.884)
(808.220, 324.117) (801.442, 544.012) (698.333, 461.597)
(801.442, 544.012) (739.631, 621.345) (698.333, 461.597)
(660.872, 244.129) (732.227, 78.877) (763.695, 288.528)
(660.872, 244.129) (644.092, 40.821) (732.227, 78.877)
(808.220, 324.117) (822.432, 544.659) (801.442, 544.012)
(660.872, 244.129) (559.380, 47.812) (644.092, 40.821)
(660.872, 244.129) (556.880, 242.796) (559.380, 47.812)
(556.880, 242.796) (528.882, 242.437) (559.380, 47.812)
(808.220, 324.117) (924.831, 449.189) (822.432, 544.659)
(924.831, 449.189) (922.677, 652.177) (822.432, 544.659)
(922.677, 652.177) (779.319, 785.836) (822.432, 544.659)
(779.319, 785.836) (696.630, 771.054) (822.432, 544.659)
(779.319, 785.836) (746.412, 969.918) (696.630, 771.054)
(779.319, 785.836) (848.467, 840.265) (746.412, 969.918)
(848.467, 840.265) (889.327, 872.428) (746.412, 969.918)
(746.412, 969.918) (619.097, 866.541) (696.630, 771.054)
(779.319, 785.836) (993.200, 656.395) (848.467, 840.265)
(993.200, 656.395) (935.157, 864.450) (848.467, 840.265)
(993.200, 656.395) (995.840, 881.379) (935.157, 864.450)
(338.497, 88.341) (34.607, 5.420) (359.556, 11.163)
(338.497, 88.341) (189.294, 204.357) (34.607, 5.420)
(189.294, 204.357) (158.507, 228.296) (34.607, 5.420)
(158.507, 228.296) (38.525, 230.386) (34.607, 5.420)
(158.507, 228.296) (41.694, 412.358) (38.525, 230.386)

Xem phần 2 để biết mã. Điều này đã được chia thành 2 phần để làm việc xung quanh giới hạn kích thước bài.

Mã này cũng có sẵn trên PasteBin .


8

C ++, 146 hình tam giác (phần 2/2)

Tiếp tục từ phần 1. Điều này đã được chia thành 2 phần để làm việc xung quanh giới hạn kích thước bài.

Bình luận sẽ được thêm vào.

#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <sstream>
#include <iostream>

class Vec2 {
public:
    Vec2()
      : m_x(0.0f), m_y(0.0f) {
    }

    Vec2(float x, float y)
      : m_x(x), m_y(y) {
    }

    float x() const {
        return m_x;
    }

    float y() const {
        return m_y;
    }

    void normalize() {
        float s = 1.0f / sqrt(m_x * m_x + m_y * m_y);
        m_x *= s;
        m_y *= s;
    }

    Vec2 operator+(const Vec2& rhs) const {
        return Vec2(m_x + rhs.m_x, m_y + rhs.m_y);
    }

    Vec2 operator-(const Vec2& rhs) const {
        return Vec2(m_x - rhs.m_x, m_y - rhs.m_y);
    }

    Vec2 operator*(float s) const {
        return Vec2(m_x * s, m_y * s);
    }

private:
    float m_x, m_y;
};

static float cross(const Vec2& v1, const Vec2& v2) {
    return v1.x() * v2.y() - v1.y() * v2.x();
}

class Triangle {
public:
    Triangle()
      : m_sideLenA(0), m_sideLenB(0), m_sideLenC(0) {
    }

    Triangle(int sideLenA, int sideLenB, int sideLenC)
      : m_sideLenA(sideLenA),
        m_sideLenB(sideLenB),
        m_sideLenC(sideLenC) {
    }

    int getSideLenA() const {
        return m_sideLenA;
    }

    int getSideLenB() const {
        return m_sideLenB;
    }

    int getSideLenC() const {
        return m_sideLenC;
    }

private:
    int m_sideLenA, m_sideLenB, m_sideLenC;
};

class Connector {
public:
    Connector(int sideLen, int triIdx1, int triIdx2, bool flipped);

    bool operator<(const Connector& rhs) const;

    void print() const {
        std::cout << m_sideLen << "/" << m_triIdx1 << "/"
                  << m_triIdx2 << "/" << m_flipped << " ";
    }

private:
    int m_sideLen;
    int m_triIdx1, m_triIdx2;
    bool m_flipped;
};

typedef std::vector<Triangle> TriangleVec;
typedef std::multimap<int, int> SideMap;

typedef std::set<int> TriangleSet;
typedef std::set<Connector> ConnectorSet;

class SolutionKey {
public:
    SolutionKey() {
    }

    void init(int triIdx);
    void add(int triIdx, const Connector& conn);

    bool containsTriangle(int triIdx) const;
    int minTriangle() const;

    bool operator<(const SolutionKey& rhs) const;

    void print() const;

private:
    TriangleSet m_tris;
    ConnectorSet m_conns;
};

typedef std::map<SolutionKey, class SolutionData> SolutionMap;

class SolutionData {
public:
    SolutionData()
      : m_lastPeriIdx(0),
        m_rotAng(0.0f),
        m_xShift(0.0f), m_yShift(0.0f) {
    }

    void init(int triIdx);

    bool fitsInBox();
    bool selfOverlaps() const;

    void nextGeneration(
        const SolutionKey& key, bool useTrim, SolutionMap& rNewSols) const;

    void print() const;

private:
    void addTriangle(
        const SolutionKey& key, int periIdx, int newTriIdx,
        SolutionMap& rNewSols) const;

    std::vector<int> m_periTris;
    std::vector<int> m_periLens;
    std::vector<bool> m_periFlipped;
    std::vector<Vec2> m_periPoints;

    int m_lastPeriIdx;

    std::vector<Vec2> m_triPoints;

    float m_rotAng;
    float m_xShift, m_yShift;
};

static int BoxW  = 0;
static int BoxH  = 0;
static int BoxD2 = 0;

static TriangleVec AllTriangles;
static SideMap AllSides;

Connector::Connector(
    int sideLen, int triIdx1, int triIdx2, bool flipped)
  : m_sideLen(sideLen),
    m_flipped(flipped) {
    if (triIdx1 < triIdx2) {
        m_triIdx1 = triIdx1;
        m_triIdx2 = triIdx2;
    } else {
        m_triIdx1 = triIdx2;
        m_triIdx2 = triIdx1;
    }
}

bool Connector::operator<(const Connector& rhs) const {
    if (m_sideLen < rhs.m_sideLen) {
        return true;
    } else if (m_sideLen > rhs.m_sideLen) {
        return false;
    }

    if (m_triIdx1 < rhs.m_triIdx1) {
        return true;
    } else if (m_triIdx1 > rhs.m_triIdx1) {
        return false;
    }

    if (m_triIdx2 < rhs.m_triIdx2) {
        return true;
    } else if (m_triIdx2 > rhs.m_triIdx2) {
        return false;
    }

    return m_flipped < rhs.m_flipped;
}

void SolutionKey::init(int triIdx) {
    m_tris.insert(triIdx);
}

void SolutionKey::add(int triIdx, const Connector& conn) {
    m_tris.insert(triIdx);
    m_conns.insert(conn);
}

bool SolutionKey::containsTriangle(int triIdx) const {
    return m_tris.count(triIdx);
}

int SolutionKey::minTriangle() const {
    return *m_tris.begin();
}

bool SolutionKey::operator<(const SolutionKey& rhs) const {
    if (m_tris.size() < rhs.m_tris.size()) {
        return true;
    } else if (m_tris.size() > rhs.m_tris.size()) {
        return false;
    }

    TriangleSet::const_iterator triIt1 = m_tris.begin();
    TriangleSet::const_iterator triIt2 = rhs.m_tris.begin();
    while (triIt1 != m_tris.end()) {
        if (*triIt1 < *triIt2) {
           return true;
        } else if (*triIt2 < *triIt1) {
           return false;
        }
        ++triIt1;
        ++triIt2;
    }

    if (m_conns.size() < rhs.m_conns.size()) {
        return true;
    } else if (m_conns.size() > rhs.m_conns.size()) {
        return false;
    }

    ConnectorSet::const_iterator connIt1 = m_conns.begin();
    ConnectorSet::const_iterator connIt2 = rhs.m_conns.begin();
    while (connIt1 != m_conns.end()) {
        if (*connIt1 < *connIt2) {
           return true;
        } else if (*connIt2 < *connIt1) {
           return false;
        }
        ++connIt1;
        ++connIt2;
    }

    return false;
}

void SolutionKey::print() const {
    TriangleSet::const_iterator triIt = m_tris.begin();
    while (triIt != m_tris.end()) {
        std::cout << *triIt << " ";
        ++triIt;
    }
    std::cout << "\n";

    ConnectorSet::const_iterator connIt = m_conns.begin();
    while (connIt != m_conns.end()) {
        connIt->print();
        ++connIt;
    }
    std::cout << "\n";
}

void SolutionData::init(int triIdx) {
    const Triangle& tri = AllTriangles[triIdx];

    m_periTris.push_back(triIdx);
    m_periTris.push_back(triIdx);
    m_periTris.push_back(triIdx);

    m_periLens.push_back(tri.getSideLenB());
    m_periLens.push_back(tri.getSideLenC());
    m_periLens.push_back(tri.getSideLenA());

    m_periFlipped.push_back(false);
    m_periFlipped.push_back(false);
    m_periFlipped.push_back(false);

    m_periPoints.push_back(Vec2(0.0f, 0.0f));
    m_periPoints.push_back(Vec2(tri.getSideLenB(), 0.0f));
    m_periPoints.push_back(Vec2(0.0f, tri.getSideLenA()));

    m_triPoints = m_periPoints;

    m_periPoints.push_back(Vec2(0.0f, 0.0f));
}

bool SolutionData::fitsInBox() {
    int nStep = 8;
    float angInc = 0.5f * M_PI / nStep;

    for (;;) {
        bool mayFit = false;
        float ang = 0.0f;

        for (int iStep = 0; iStep <= nStep; ++iStep) {
            float cosAng = cos(ang);
            float sinAng = sin(ang);

            float xMin = 0.0f;
            float xMax = 0.0f;
            float yMin = 0.0f;
            float yMax = 0.0f;
            bool isFirst = true;

            for (int iPeri = 0; iPeri < m_periLens.size(); ++iPeri) {
                const Vec2& pt = m_periPoints[iPeri];
                float x = cosAng * pt.x() - sinAng * pt.y();
                float y = sinAng * pt.x() + cosAng * pt.y();

                if (isFirst) {
                    xMin = x;
                    xMax = x;
                    yMin = y;
                    yMax = y;
                    isFirst = false;
                } else {
                    if (x < xMin) {
                        xMin = x;
                    } else if (x > xMax) {
                        xMax = x;
                    }
                    if (y < yMin) {
                        yMin = y;
                    } else if (y > yMax) {
                        yMax = y;
                    }
                }
            }

            float w = xMax - xMin;
            float h = yMax - yMin;

            bool fits = false;
            if ((BoxW >= BoxH) == (w >= h)) {
                if (w <= BoxW && h <= BoxH) {
                    m_rotAng = ang;
                    m_xShift = 0.5f * BoxW - 0.5f * (xMax + xMin);
                    m_yShift = 0.5f * BoxH - 0.5f * (yMax + yMin);
                    return true;
                }
            } else {
                if (h <= BoxW && w <= BoxH) {
                    m_rotAng = ang + 0.5f * M_PI;
                    m_xShift = 0.5f * BoxW + 0.5f * (yMax + yMin);
                    m_yShift = 0.5f * BoxH - 0.5f * (xMax + xMin);
                    return true;
                }
            }

            w -= 0.125f * w * angInc * angInc + 0.5f * h * angInc;
            h -= 0.125f * h * angInc * angInc + 0.5f * w * angInc;

            if ((BoxW < BoxH) == (w < h)) {
                if (w <= BoxW && h <= BoxH) {
                    mayFit = true;
                }
            } else {
                if (h <= BoxW && w <= BoxH) {
                    mayFit = true;
                }
            }

            ang += angInc;
        }

        if (!mayFit) {
            break;
        }

        nStep *= 4;
        angInc *= 0.25f;
    }

    return false;
}

static bool intersects(
    const Vec2& p1, const Vec2& p2,
    const Vec2& q1, const Vec2& q2) {

    if (cross(p2 - p1, q1 - p1) * cross(p2 - p1, q2 - p1) > 0.0f) {
        return false;
    }

    if (cross(q2 - q1, p1 - q1) * cross(q2 - q1, p2 - q1) > 0.0f) {
        return false;
    }

    return true;
}

bool SolutionData::selfOverlaps() const {
    int periSize = m_periPoints.size();

    int triIdx = m_periTris[m_lastPeriIdx];
    const Triangle& tri = AllTriangles[triIdx];
    float offsScale = 0.0001f / tri.getSideLenC();

    const Vec2& pt1 = m_periPoints[m_lastPeriIdx];
    const Vec2& pt3 = m_periPoints[m_lastPeriIdx + 1];
    const Vec2& pt2 = m_periPoints[m_lastPeriIdx + 2];

    Vec2 pt1o = pt1 + ((pt2 - pt1) + (pt3 - pt1)) * offsScale;
    Vec2 pt2o = pt2 + ((pt1 - pt2) + (pt3 - pt2)) * offsScale;
    Vec2 pt3o = pt3 + ((pt1 - pt3) + (pt2 - pt3)) * offsScale;

    float xMax = m_periPoints[0].x();
    float yMax = m_periPoints[0].y();
    for (int iPeri = 1; iPeri < m_periLens.size(); ++iPeri) {
        if (m_periPoints[iPeri].x() > xMax) {
            xMax = m_periPoints[iPeri].x();
        }
        if (m_periPoints[iPeri].y() > yMax) {
            yMax = m_periPoints[iPeri].y();
        }
    }

    Vec2 ptOut(xMax + 0.3f, yMax + 0.7f);
    int nOutInter = 0;

    for (int iPeri = 0; iPeri < m_periLens.size(); ++iPeri) {
        int iNextPeri = iPeri + 1;
        if (iPeri == m_lastPeriIdx) {
            ++iNextPeri;
        } else if (iPeri == m_lastPeriIdx + 1) {
            continue;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt1o, pt3o)) {
            return true;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt2o, pt3o)) {
            return true;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt3o, ptOut)) {
            ++nOutInter;
        }
    }

    return nOutInter % 2;
}

void SolutionData::nextGeneration(
    const SolutionKey& key, bool useTrim, SolutionMap& rNewSols) const
{
    int nPeri = m_periLens.size();
    for (int iPeri = (useTrim ? 0 : m_lastPeriIdx); iPeri < nPeri; ++iPeri) {
        int len = m_periLens[iPeri];
        SideMap::const_iterator itCand = AllSides.lower_bound(len);
        SideMap::const_iterator itCandEnd = AllSides.upper_bound(len);
        while (itCand != itCandEnd) {
            int candTriIdx = itCand->second;
            if (!key.containsTriangle(candTriIdx) &&
                candTriIdx > key.minTriangle()) {
                addTriangle(key, iPeri, candTriIdx, rNewSols);
            }
            ++itCand;
        }
    }
}

void SolutionData::print() const {
    float cosAng = cos(m_rotAng);
    float sinAng = sin(m_rotAng);

    int nPoint = m_triPoints.size();

    for (int iPoint = 0; iPoint < nPoint; ++iPoint) {
        const Vec2& pt = m_triPoints[iPoint];
        float x = cosAng * pt.x() - sinAng * pt.y() + m_xShift;
        float y = sinAng * pt.x() + cosAng * pt.y() + m_yShift;
        std::cout << "(" << x << ", " << y << ")";

        if (iPoint % 3 == 2) {
            std::cout << std::endl;
        } else {
            std::cout << " ";
        }
    }
}

void SolutionData::addTriangle(
    const SolutionKey& key, int periIdx, int newTriIdx,
    SolutionMap& rNewSols) const {

    int triIdx = m_periTris[periIdx];
    bool flipped = m_periFlipped[periIdx];
    int len = m_periLens[periIdx];

    Connector conn1(len, triIdx, newTriIdx, flipped);
    SolutionKey newKey1(key);
    newKey1.add(newTriIdx, conn1);
    bool isNew1 = (rNewSols.find(newKey1) == rNewSols.end());

    Connector conn2(len, triIdx, newTriIdx, !flipped);
    SolutionKey newKey2(key);
    newKey2.add(newTriIdx, conn2);
    bool isNew2 = (rNewSols.find(newKey2) == rNewSols.end());

    if (!(isNew1 || isNew2)) {
        return;
    }

    SolutionData data;

    int periSize = m_periLens.size();
    data.m_periTris.resize(periSize + 1);
    data.m_periLens.resize(periSize + 1);
    data.m_periFlipped.resize(periSize + 1);
    data.m_periPoints.resize(periSize + 2);
    for (int k = 0; k <= periIdx; ++k) {
        data.m_periTris[k] = m_periTris[k];
        data.m_periLens[k] = m_periLens[k];
        data.m_periFlipped[k] = m_periFlipped[k];
        data.m_periPoints[k] = m_periPoints[k];
    }
    for (int k = periIdx + 1; k < periSize; ++k) {
        data.m_periTris[k + 1] = m_periTris[k];
        data.m_periLens[k + 1] = m_periLens[k];
        data.m_periFlipped[k + 1] = m_periFlipped[k];
        data.m_periPoints[k + 1] = m_periPoints[k];
    }
    data.m_periPoints[periSize + 1] = m_periPoints[periSize];

    data.m_lastPeriIdx = periIdx;

    data.m_periTris[periIdx] = newTriIdx;
    data.m_periTris[periIdx + 1] = newTriIdx;

    int triSize = m_triPoints.size();
    data.m_triPoints.resize(triSize + 3);
    for (int k = 0; k < triSize; ++k) {
        data.m_triPoints[k] = m_triPoints[k];
    }

    const Triangle& tri = AllTriangles[newTriIdx];
    int lenA = tri.getSideLenA();
    int lenB = tri.getSideLenB();
    int lenC = tri.getSideLenC();

    const Vec2& pt1 = m_periPoints[periIdx];
    const Vec2& pt2 = m_periPoints[periIdx + 1];

    Vec2 v = pt2 - pt1;
    v.normalize();
    Vec2 vn(v.y(), -v.x());

    float dA = lenA;
    float dB = lenB;
    float dC = lenC;

    int len1 = 0, len2 = 0;
    Vec2 pt31, pt32;

    if (len == lenA) {
        len1 = lenB;
        len2 = lenC;
        pt31 = pt1 + vn * dB;
        pt32 = pt2 + vn * dB;
    } else if (len == lenB) {
        len1 = lenC;
        len2 = lenA;
        pt31 = pt2 + vn * dA;
        pt32 = pt1 + vn * dA;
    } else {
        len1 = lenA;
        len2 = lenB;
        pt31 = pt1 + v * (dA * dA / dC) + vn * (dA * dB / dC);
        pt32 = pt1 + v * (dB * dB / dC) + vn * (dA * dB / dC);
    }

    if (isNew1) {
        data.m_periLens[periIdx] = len1;
        data.m_periLens[periIdx + 1] = len2;
        data.m_periFlipped[periIdx] = false;
        data.m_periFlipped[periIdx + 1] = false;
        data.m_periPoints[periIdx + 1] = pt31;

        data.m_triPoints[triSize] = pt1;
        data.m_triPoints[triSize + 1] = pt31;
        data.m_triPoints[triSize + 2] = pt2;

        rNewSols.insert(std::make_pair(newKey1, data));
    }

    if (isNew2) {
        data.m_periLens[periIdx] = len2;
        data.m_periLens[periIdx + 1] = len1;
        data.m_periFlipped[periIdx] = true;
        data.m_periFlipped[periIdx + 1] = true;
        data.m_periPoints[periIdx + 1] = pt32;

        data.m_triPoints[triSize] = pt1;
        data.m_triPoints[triSize + 1] = pt32;
        data.m_triPoints[triSize + 2] = pt2;

        rNewSols.insert(std::make_pair(newKey2, data));
    }
}

static void enumerateTriangles() {
    for (int c = 2; c * c <= BoxD2; ++c) {
        for (int a = 1; 2 * a * a < c * c; ++a) {
            int b = static_cast<int>(sqrt(c * c - a * a) + 0.5f);
            if (a * a + b * b == c * c) {
                Triangle tri(a, b, c);

                int triIdx = AllTriangles.size();
                AllTriangles.push_back(Triangle(a, b, c));

                AllSides.insert(std::make_pair(a, triIdx));
                AllSides.insert(std::make_pair(b, triIdx));
                AllSides.insert(std::make_pair(c, triIdx));
            }
        }
    }
}

static void eliminateInvalid(SolutionMap& rSols) {
    SolutionMap::iterator it = rSols.begin();
    while (it != rSols.end()) {
        SolutionMap::iterator itNext = it;
        ++itNext;

        SolutionData& rSolData = it->second;

        if (!rSolData.fitsInBox()) {
            rSols.erase(it);
        } else if (rSolData.selfOverlaps()) {
            rSols.erase(it);
        }

        it = itNext;
    }
}

static void trimSolutions(SolutionMap& rSols, int trimCount) {
    if (trimCount >= rSols.size()) {
        return;
    }

    SolutionMap::iterator it = rSols.begin();
    for (int iTrim = 0; iTrim < trimCount; ++iTrim) {
        ++it;
    }

    rSols.erase(it, rSols.end());
}

static void nextGeneration(
    const SolutionMap& srcSols, bool useTrim, SolutionMap& rNewSols) {
    SolutionMap::const_iterator it = srcSols.begin();
    while (it != srcSols.end()) {
        const SolutionKey& solKey = it->first;
        const SolutionData& solData = it->second;
        solData.nextGeneration(solKey, useTrim, rNewSols);
        ++it;
    }
}

static void printSolutions(const SolutionMap& sols) {
    std::cout << std::fixed;
    std::cout.precision(3);

    SolutionMap::const_iterator it = sols.begin();
    while (it != sols.end()) {
        const SolutionKey& solKey = it->first;
        solKey.print();
        const SolutionData& solData = it->second;
        solData.print();
        std::cout << std::endl;
        ++it;
    }
}

int main(int argc, char* argv[]) {
    if (argc < 3) {
        std::cerr << "usage: " << argv[0] << " width height [trimCount]"
                  << std::endl;
        return 1;
    }

    std::istringstream streamW(argv[1]);
    streamW >> BoxW;
    std::istringstream streamH(argv[2]);
    streamH >> BoxH;

    int trimCount = 0;
    if (argc > 3) {
        std::istringstream streamTrim(argv[3]);
        streamTrim >> trimCount;
    }

    BoxD2 = BoxW * BoxW + BoxH * BoxH;

    enumerateTriangles();
    int nTri = AllTriangles.size();

    SolutionMap solGen[2];
    int srcGen = 0;

    for (int iTri = 0; iTri < nTri; ++iTri) {
        const Triangle& tri = AllTriangles[iTri];

        SolutionKey solKey;
        solKey.init(iTri);

        SolutionData solData;
        solData.init(iTri);

        solGen[srcGen].insert(std::make_pair(solKey, solData));
    }

    int level = 1;

    for (;;) {
        eliminateInvalid(solGen[srcGen]);
        std::cout << "level: " << level
                  << " solutions: " << solGen[srcGen].size() << std::endl;
        if (solGen[srcGen].empty()) {
            break;
        }

        if (trimCount > 0) {
            trimSolutions(solGen[srcGen], trimCount);
        }

        solGen[1 - srcGen].clear();
        nextGeneration(solGen[srcGen], trimCount > 0, solGen[1 - srcGen]);

        srcGen = 1 - srcGen;
        ++level;
    }

    printSolutions(solGen[1 - srcGen]);

    return 0;
}
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.