⊥1↓⍧|/⌽(+/g[⍸⌽+/⊤⎕]),↑,\⌽g←(2+/,)⍣38⍨⍳2
Hãy thử trực tuyến!
Đã thay đổi thành một chương trình đầy đủ lấy một đối số có độ dài 2 và cũng thay đổi trình tạo Fibonacci. Cảm ơn @ngn vì rất nhiều ý tưởng.
Sử dụng ⎕IO←0
để ⍳2
đánh giá 0 1
.
Trình tạo Fibonacci (mới)
Lưu ý rằng hai số cuối không chính xác, nhưng nó không thay đổi đầu ra của chương trình.
(2+/,)⍣38⍨⍳2
→ 0 1 ((2+/,)⍣38) 0 1
Step 1
0 1 (2+/,) 0 1
→ 2+/ 0 1 0 1
→ (0+1) (1+0) (0+1) ⍝ 2+/ evaluates sums for moving window of length 2
→ 1 1 1
Step 2
0 1 (2+/,) 1 1 1
→ 2+/ 0 1 1 1 1
→ 1 2 2 2
Step 3
0 1 (2+/,) 1 2 2 2
→ 2+/ 0 1 1 2 2 2
→ 1 2 3 4 4
Zeckendorf để đơn giản (một phần)
⍸⌽+/⊤⎕
⎕ ⍝ Take input from stdin, must be an array of 2 numbers
⊤ ⍝ Convert each number to base 2; each number is mapped to a column
+/ ⍝ Sum in row direction; add up the counts at each digit position
⌽ ⍝ Reverse
⍸ ⍝ Convert each number n at index i to n copies of i
g←1↓(1,+\⍤,)⍣20⍨1
{⊥1↓⍧|/⌽⍵,↑,\⌽g}+⍥{+/g[⍸⌽⊤⍵]}
Hãy thử trực tuyến!
Đã thay đổi Phần 1 của câu trả lời trước để sử dụng lại các số Fibonacci. Ngoài ra, thả bản sao 1 để lưu một số byte ở những nơi khác.
Phần 1 (mới)
{+/g[⍸⌽⊤⍵]}
⊤⍵ ⍝ Argument to binary digits
⍸⌽ ⍝ Reverse and convert to indices of ones
g[ ] ⍝ Index into the Fibonacci array of 1,2,3,5,...
+/ ⍝ Sum
{⊥1↓¯1↓⍧|/⌽⍵,↑,\⌽(1,+\⍤,)⍣20⍨1}+⍥({+∘÷⍣(⌽⍳≢⊤⍵)⍨1}⊥⊤)
Hãy thử trực tuyến!
Làm thế nào nó hoạt động
Không có thuật toán ưa thích nào để thực hiện bổ sung trong Zeckendorf vì APL không được biết đến để hoạt động trên các phần tử riêng lẻ trong một mảng. Thay vào đó, tôi đã đi trước để chuyển đổi hai đầu vào từ Zeckendorf sang số nguyên đơn giản, thêm chúng và chuyển đổi lại.
Phần 1: Zeckendorf thành số nguyên
{+∘÷⍣(⌽⍳≢⊤⍵)⍨1}⊥⊤ ⍝ Zeckendorf to plain integer
⊤ ⍝ Convert the input to array of binary digits (X)
{ ( ≢⊤⍵) } ⍝ Take the length L of the binary digits and
⌽⍳ ⍝ generate 1,2..L backwards, so L..2,1
{+∘÷⍣( )⍨1} ⍝ Apply "Inverse and add 1" L..2,1 times to 1
⍝ The result looks like ..8÷5 5÷3 3÷2 2 (Y)
⊥ ⍝ Mixed base conversion of X into base Y
Base | Digit value
-------------------------------
13÷8 | (8÷5)×(5÷3)×(3÷2)×2 = 8
8÷5 | (5÷3)×(3÷2)×2 = 5
5÷3 | (3÷2)×2 = 3
3÷2 | 2 = 2
2÷1 | 1 = 1
Phần 2: Thêm hai số nguyên đơn giản
+⍥z2i ⍝ Given left and right arguments,
⍝ apply z2i to each of them and add the two
Phần 3: Chuyển đổi tổng trở lại Zeckendorf
"Bạn có thể giả sử rằng các biểu diễn Zeckendorf của cả đầu vào và đầu ra khớp với 31 bit" khá tiện dụng.
{⊥1↓¯1↓⍧|/⌽⍵,↑,\⌽(1,+\⍤,)⍣20⍨1} ⍝ Convert plain integer N to Zeckendorf
(1,+\⍤,)⍣20⍨1 ⍝ First 41 Fibonacci numbers starting with two 1's
⌽ ⍝ Reverse
↑,\ ⍝ Matrix of prefixes, filling empty spaces with 0's
⌽⍵, ⍝ Prepend N to each row and reverse horizontally
|/ ⍝ Reduce by | (residue) on each row (see below)
⍧ ⍝ Nub sieve; 1 at first appearance of each number, 0 otherwise
1↓¯1↓ ⍝ Remove first and last item
⊥ ⍝ Convert from binary digits to integer
Trình tạo Fibonacci
(1,+\⍤,)⍣20⍨1
→ 1 ((1,+\⍤,)⍣20) 1 ⍝ Expand ⍨
→ Apply 1 (1,+\⍤,) x 20 times to 1
First iteration
1(1,+\⍤,)1
→ 1,+\1,1 ⍝ Expand the train
→ 1,1 2 ⍝ +\ is cumulative sum
→ 1 1 2 ⍝ First three Fibonacci numbers
Second iteration
1(1,+\⍤,)1 1 2
→ 1,+\1,1 1 2 ⍝ Expand the train
→ 1 1 2 3 5 ⍝ First five Fibonacci numbers
⍣20 ⍝ ... Repeat 20 times
Điều này xuất phát từ thuộc tính của các số Fibonacci: nếu Fibonacci được định nghĩa là
F0=F1=1;∀n≥0,Fn+2=Fn+1+Fn
sau đó
∀n≥0,∑i=0nFi=Fn+2−1
1,F0,⋯,FnF1,⋯,Fn+2
Các chữ số Fibonacci đến Zeckendorf
Input: 7, Fibonacci: 1 1 2 3 5 8 13
Matrix
0 0 0 0 0 0 13 7
0 0 0 0 0 8 13 7
0 0 0 0 5 8 13 7
0 0 0 3 5 8 13 7
0 0 2 3 5 8 13 7
0 1 2 3 5 8 13 7
1 1 2 3 5 8 13 7
Reduction by residue (|/)
- Right side always binds first.
- x|y is equivalent to y%x in other languages.
- 0|y is defined as y, so leading zeros are ignored.
- So we're effectively doing cumulative scan from the right.
0 0 0 0 0 0 13 7 → 13|7 = 7
0 0 0 0 0 8 13 7 → 8|7 = 7
0 0 0 0 5 8 13 7 → 5|7 = 2
0 0 0 3 5 8 13 7 → 3|2 = 2
0 0 2 3 5 8 13 7 → 2|2 = 0
0 1 2 3 5 8 13 7 → 1|0 = 0
1 1 2 3 5 8 13 7 → 1|0 = 0
Result: 7 7 2 2 0 0 0
Nub sieve (⍧): 1 0 1 0 1 0 0
1's in the middle are produced when divisor ≤ dividend
(so it contributes to a Zeckendorf digit).
But the first 1 and last 0 are meaningless.
Drop first and last (1↓¯1↓): 0 1 0 1 0
Finally, we apply base 2 to integer (⊥) to match the output format.