Số nguyên phức


29

Nhiệm vụ của bạn là viết một chương trình, trên đầu vào n, xuất ra biểu thức tối thiểu của mỗi số từ 1 đến n theo thứ tự. Chương trình ngắn nhất tính bằng byte thắng.

Một biểu thức tối thiểu kết hợp 1 'với phép cộng và phép nhân để tạo ra số đã cho, sử dụng càng ít 1 càng tốt. Ví dụ, 23được thể hiện như 23=((1+1+1)(1+1)+1)(1+1+1)+1+1với mười một, đó là tối thiểu.

Yêu cầu:

  1. Chương trình phải lấy đầu vào là số tự nhiên dương n.
  2. Đầu ra phải ở định dạng này: 20 = ((1+1+1)(1+1+1)+1)(1+1)
  3. Đầu ra của bạn có thể không có dấu ngoặc đơn không cần thiết, như 8 = ((1+1)(1+1))(1+1).
  4. Dấu nhân *là tùy chọn.
  5. Không gian là tùy chọn.
  6. Bạn không phải xuất tất cả các phương trình có thể cho giá trị đã cho: Ví dụ: bạn có quyền lựa chọn đầu ra 4=1+1+1+1hoặc 4=(1+1)(1+1). Bạn không phải xuất cả hai.
  7. Chương trình ngắn nhất (tính bằng byte) trong mỗi ngôn ngữ sẽ thắng.
1 = 1
2 = 1 + 1
3 = 1 + 1 + 1
4 = 1 + 1 + 1 + 1
5 = 1 + 1 + 1 + 1 + 1
6 = (1 + 1 + 1) (1 + 1)
7 = (1 + 1 + 1) (1 + 1) +1
8 = (1 + 1 + 1 + 1) (1 + 1)
9 = (1 + 1 + 1) (1 + 1 + 1)
10 = (1 + 1 + 1) (1 + 1 + 1) +1
11 = (1 + 1 + 1) (1 + 1 + 1) + 1 + 1
12 = (1 + 1 + 1) (1 + 1) (1 + 1)
13 = (1 + 1 + 1) (1 + 1) (1 + 1) +1
14 = ((1 + 1 + 1) (1 + 1) +1) (1 + 1)
15 = (1 + 1 + 1 + 1 + 1) (1 + 1 + 1)
16 = (1 + 1 + 1 + 1) (1 + 1) (1 + 1)
17 = (1 + 1 + 1 + 1) (1 + 1) (1 + 1) +1
18 = (1 + 1 + 1) (1 + 1 + 1) (1 + 1)
19 = (1 + 1 + 1) (1 + 1 + 1) (1 + 1) +1
20 = ((1 + 1 + 1) (1 + 1 + 1) +1) (1 + 1)

Dưới đây là một số trường hợp kiểm tra khác: (hãy nhớ rằng các biểu thức khác có cùng số 1 cũng được cho phép)

157=((1+1+1)(1+1)(1+1)+1)(1+1+1)(1+1)(1+1)+1

444=((1+1+1)(1+1+1)(1+1)(1+1)+1)(1+1+1)(1+1)(1+1)

1223=((1+1+1)(1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)(1+1+1+1+1)+1+1+1

15535=((((1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)((1+1+1)(1+1)+1)+1)(1+1+1)+1)(1+1+1)(1+1+1)+1

45197=((((1+1+1)(1+1)(1+1)(1+1)+1)(1+1+1+1+1)(1+1)+1)(1+1+1)(1+1)(1+1)+1)(1+1+1+1+1)(1+1+1)+1+1

Chúc may mắn! - Rùa


1
1) Viên đạn số 6 của bạn chưa kết thúc (nó thiếu đầu ra ví dụ cho n=20) và 2) bạn nói lúc đầu rằng độ phức của số nguyên, khác với phương trình, phải là đầu ra, nhưng bạn không bao gồm nó trong bất kỳ ví dụ nào ngoại trừ cái đầu tiên
El'endia Starman

Tôi vẫn chưa rõ. Bạn chỉ cần xuất phương trình?
xnor

Vâng. Độ phức tạp số nguyên không nên xuất ra. Tôi cũng sẽ làm rõ điều đó. Xin lỗi cho những sai lầm. :(
Rùa

Rất tiếc, tôi đã nói viên đạn số 6 khi tôi nên nói viên đạn số 5, trong danh sách yêu cầu của bạn. Đối với vấn đề khác, cảm ơn vì đã sửa nó. :)
El'endia Starman

1
Liên quan: oeis.org/A005245 oeis.org/A061373 và cuối cùng là oeis.org/A091333
flawr

Câu trả lời:


10

Bình thường, 60 byte

LjWqeb\1b`()L?tbho/N\1++'tb"+1"m+y'/bdy'df!%bTr2b1VSQ++N\='N

Trình diễn

Trình biên dịch trực tuyến có thể đạt tới 1223 trước khi hết thời gian, nhờ khả năng ghi nhớ chức năng tự động của Pyth.

1223=((1+1+1)(1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)(1+1+1+1+1)+1+1+1

Trong thông báo hủy bỏ,

1223=(3^5+1)*5+3

Điều này sử dụng hàm đệ quy ', tính toán tất cả các sản phẩm và tổng có thể cho đầu ra mong muốn, tìm chuỗi ngắn nhất với mỗi thao tác cuối cùng, sau đó so sánh chúng bằng cách 1đếm và trả về lần đầu tiên.

Nó sử dụng một hàm trợ giúp y, chỉ ngoặc đơn cho một biểu thức nếu nó cần được ngoặc đơn.

Ngoại tuyến, tôi đang chạy chương trình với đầu vào 15535và nó đã gần hoàn tất. Kết quả được in tăng dần, vì vậy rất dễ dàng để xem tiến trình.

Dòng cuối cùng của đầu ra:

15535=((((1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)((1+1+1)(1+1)+1)+1)(1+1+1)+1)(1+1+1)(1+1+1)+1

real    7m8.430s
user    7m7.158s
sys 0m0.945s

Trong ký hiệu viết tắt,

15535=(((3^4+1)*(3*2+1)+1)*3+1)*3^2+1

7

CJam, 105 102 98 96 byte

q~{)'=1$2,{:I{I1$-'+}%3/1>Imf'*+aImp!*+{)\{j}%\+}:F%{e_"+*"-:+}$0=}j2,{F)_'*={;{'(\')}%1}&*}jN}/

Hãy thử trực tuyến trong trình thông dịch CJam .

Chạy thử nghiệm

Trình thông dịch trực tuyến quá chậm đối với các trường hợp thử nghiệm lớn hơn. Ngay cả với trình thông dịch Java, các trường hợp thử nghiệm lớn hơn sẽ mất nhiều thời gian và đòi hỏi một lượng bộ nhớ đáng kể.

$ time cjam integer-complexity.cjam <<< 157
1=1
2=1+1
3=1+1+1
4=1+1+1+1
5=1+1+1+1+1
6=(1+1)(1+1+1)
7=1+(1+1)(1+1+1)
8=(1+1)(1+1)(1+1)
9=(1+1+1)(1+1+1)
10=1+(1+1+1)(1+1+1)
11=1+1+(1+1+1)(1+1+1)
12=(1+1)(1+1)(1+1+1)
13=1+(1+1)(1+1)(1+1+1)
14=(1+1)(1+(1+1)(1+1+1))
15=(1+1+1)(1+1+1+1+1)
16=(1+1)(1+1)(1+1)(1+1)
17=1+(1+1)(1+1)(1+1)(1+1)
18=(1+1)(1+1+1)(1+1+1)
19=1+(1+1)(1+1+1)(1+1+1)
20=(1+1)(1+1)(1+1+1+1+1)
21=(1+1+1)(1+(1+1)(1+1+1))
22=1+(1+1+1)(1+(1+1)(1+1+1))
23=1+1+(1+1+1)(1+(1+1)(1+1+1))
24=(1+1)(1+1)(1+1)(1+1+1)
25=1+(1+1)(1+1)(1+1)(1+1+1)
26=(1+1)(1+(1+1)(1+1)(1+1+1))
27=(1+1+1)(1+1+1)(1+1+1)
28=1+(1+1+1)(1+1+1)(1+1+1)
29=1+1+(1+1+1)(1+1+1)(1+1+1)
30=(1+1)(1+1+1)(1+1+1+1+1)
31=1+(1+1)(1+1+1)(1+1+1+1+1)
32=(1+1)(1+1)(1+1)(1+1)(1+1)
33=1+(1+1)(1+1)(1+1)(1+1)(1+1)
34=(1+1)(1+(1+1)(1+1)(1+1)(1+1))
35=(1+1+1+1+1)(1+(1+1)(1+1+1))
36=(1+1)(1+1)(1+1+1)(1+1+1)
37=1+(1+1)(1+1)(1+1+1)(1+1+1)
38=(1+1)(1+(1+1)(1+1+1)(1+1+1))
39=(1+1+1)(1+(1+1)(1+1)(1+1+1))
40=(1+1)(1+1)(1+1)(1+1+1+1+1)
41=1+(1+1)(1+1)(1+1)(1+1+1+1+1)
42=(1+1)(1+1+1)(1+(1+1)(1+1+1))
43=1+(1+1)(1+1+1)(1+(1+1)(1+1+1))
44=(1+1)(1+1)(1+1+(1+1+1)(1+1+1))
45=(1+1+1)(1+1+1)(1+1+1+1+1)
46=1+(1+1+1)(1+1+1)(1+1+1+1+1)
47=1+1+(1+1+1)(1+1+1)(1+1+1+1+1)
48=(1+1)(1+1)(1+1)(1+1)(1+1+1)
49=1+(1+1)(1+1)(1+1)(1+1)(1+1+1)
50=(1+1)(1+1+1+1+1)(1+1+1+1+1)
51=(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
52=(1+1)(1+1)(1+(1+1)(1+1)(1+1+1))
53=1+(1+1)(1+1)(1+(1+1)(1+1)(1+1+1))
54=(1+1)(1+1+1)(1+1+1)(1+1+1)
55=1+(1+1)(1+1+1)(1+1+1)(1+1+1)
56=(1+1)(1+1)(1+1)(1+(1+1)(1+1+1))
57=(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
58=1+(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
59=1+1+(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
60=(1+1)(1+1)(1+1+1)(1+1+1+1+1)
61=1+(1+1)(1+1)(1+1+1)(1+1+1+1+1)
62=(1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
63=(1+1+1)(1+1+1)(1+(1+1)(1+1+1))
64=(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
65=1+(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
66=(1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
67=1+(1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
68=(1+1)(1+1)(1+(1+1)(1+1)(1+1)(1+1))
69=1+(1+1)(1+1)(1+(1+1)(1+1)(1+1)(1+1))
70=(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
71=1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
72=(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
73=1+(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
74=(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
75=(1+1+1)(1+1+1+1+1)(1+1+1+1+1)
76=(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1))
77=1+(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1))
78=(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
79=1+(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
80=(1+1)(1+1)(1+1)(1+1)(1+1+1+1+1)
81=(1+1+1)(1+1+1)(1+1+1)(1+1+1)
82=1+(1+1+1)(1+1+1)(1+1+1)(1+1+1)
83=1+1+(1+1+1)(1+1+1)(1+1+1)(1+1+1)
84=(1+1)(1+1)(1+1+1)(1+(1+1)(1+1+1))
85=1+(1+1)(1+1)(1+1+1)(1+(1+1)(1+1+1))
86=(1+1)(1+(1+1)(1+1+1)(1+(1+1)(1+1+1)))
87=(1+1+1)(1+1+(1+1+1)(1+1+1)(1+1+1))
88=(1+1)(1+1)(1+1)(1+1+(1+1+1)(1+1+1))
89=1+(1+1)(1+1)(1+1)(1+1+(1+1+1)(1+1+1))
90=(1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
91=1+(1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
92=1+1+(1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
93=(1+1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
94=1+(1+1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
95=(1+1+1+1+1)(1+(1+1)(1+1+1)(1+1+1))
96=(1+1)(1+1)(1+1)(1+1)(1+1)(1+1+1)
97=1+(1+1)(1+1)(1+1)(1+1)(1+1)(1+1+1)
98=(1+1)(1+(1+1)(1+1+1))(1+(1+1)(1+1+1))
99=(1+1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
100=(1+1)(1+1)(1+1+1+1+1)(1+1+1+1+1)
101=1+(1+1)(1+1)(1+1+1+1+1)(1+1+1+1+1)
102=(1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
103=1+(1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
104=(1+1)(1+1)(1+1)(1+(1+1)(1+1)(1+1+1))
105=(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
106=1+(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
107=1+1+(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
108=(1+1)(1+1)(1+1+1)(1+1+1)(1+1+1)
109=1+(1+1)(1+1)(1+1+1)(1+1+1)(1+1+1)
110=1+1+(1+1)(1+1)(1+1+1)(1+1+1)(1+1+1)
111=(1+1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
112=(1+1)(1+1)(1+1)(1+1)(1+(1+1)(1+1+1))
113=1+(1+1)(1+1)(1+1)(1+1)(1+(1+1)(1+1+1))
114=(1+1)(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
115=1+(1+1)(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
116=(1+1)(1+1)(1+1+(1+1+1)(1+1+1)(1+1+1))
117=(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
118=1+(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
119=(1+(1+1)(1+1+1))(1+(1+1)(1+1)(1+1)(1+1))
120=(1+1)(1+1)(1+1)(1+1+1)(1+1+1+1+1)
121=1+(1+1)(1+1)(1+1)(1+1+1)(1+1+1+1+1)
122=(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1+1+1))
123=(1+1+1)(1+(1+1)(1+1)(1+1)(1+1+1+1+1))
124=(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
125=(1+1+1+1+1)(1+1+1+1+1)(1+1+1+1+1)
126=(1+1)(1+1+1)(1+1+1)(1+(1+1)(1+1+1))
127=1+(1+1)(1+1+1)(1+1+1)(1+(1+1)(1+1+1))
128=(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
129=1+(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
130=(1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1+1))
131=1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1+1))
132=(1+1)(1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
133=(1+(1+1)(1+1+1))(1+(1+1)(1+1+1)(1+1+1))
134=1+(1+(1+1)(1+1+1))(1+(1+1)(1+1+1)(1+1+1))
135=(1+1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
136=1+(1+1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
137=1+1+(1+1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
138=(1+1)(1+1+1)(1+1+(1+1+1)(1+(1+1)(1+1+1)))
139=1+(1+1)(1+1+1)(1+1+(1+1+1)(1+(1+1)(1+1+1)))
140=(1+1)(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
141=1+(1+1)(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
142=(1+1)(1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1)))
143=(1+1+(1+1+1)(1+1+1))(1+(1+1)(1+1)(1+1+1))
144=(1+1)(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
145=1+(1+1)(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
146=(1+1)(1+(1+1)(1+1)(1+1)(1+1+1)(1+1+1))
147=(1+1+1)(1+(1+1)(1+1+1))(1+(1+1)(1+1+1))
148=(1+1)(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
149=1+(1+1)(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
150=(1+1)(1+1+1)(1+1+1+1+1)(1+1+1+1+1)
151=1+(1+1)(1+1+1)(1+1+1+1+1)(1+1+1+1+1)
152=(1+1)(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1))
153=(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
154=1+(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
155=(1+1+1+1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
156=(1+1)(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
157=1+(1+1)(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))

real    0m3.896s
user    0m4.892s
sys     0m0.066s

Cho đủ thời gian, nó sẽ tạo ra các giải pháp này cho các trường hợp thử nghiệm tiếp theo:

444=(1+1)(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
1223=1+1+(1+1+1)(1+1+(1+1+1)(1+1+1))(1+(1+1)(1+1)(1+1+1)(1+1+1))

Làm thế nào nó hoạt động?
flawr

@flawr Tôi vẫn hy vọng chơi golf này nhiều hơn một chút. Tôi sẽ thêm một lời giải thích khi tôi hoàn thành / từ bỏ.
Dennis

4

Julia, 229 byte

n->(F=i->K[i]>0?E[i]:"("E[i]")";C=[1;3:n+1];K=0C;E=fill("1",n);for s=1:n for i=1:s÷2 (D=C[i]+C[s-i])<C[s]?(C[s]=D;E[s]=E[i]"+"E[s-i];K[s]=0):s%i>0||(D=C[i]+C[j=s÷i])<C[s]&&(C[s]=D;E[s]=F(i)F(j);K[s]=1)end;println("$s="E[s])end)

Điều này thực sự khá nhanh. Gán chức năng cho fvà chạy @time f(15535)sẽ cho đầu ra (chỉ hai dòng cuối cùng)

15535=1+(1+1+1)(1+1+1)(1+(1+1+1)(1+(1+(1+1)(1+1+1))(1+(1+1+1)(1+1+1)(1+1+1)(1+1+1))))
32.211583 seconds (263.30 M allocations: 4.839 GB, 4.81% gc time)

và cho @time f(45197), nó cho

45197=1+1+(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1+1)(1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1)(1+1+1))))
289.749564 seconds (2.42 G allocations: 43.660 GB, 4.91% gc time)

Vì vậy, các mã đang làm gì? Đơn giản - Cgiữ một số hiện tại Ccho số, Klà một mảng chỉ báo theo dõi xem biểu thức về cơ bản là một tổng hay một sản phẩm, cho mục đích xử lý dấu ngoặc và Egiữ Echính nó. Làm việc theo cách của nó từ s=1xuyên suốt đến n, mã tìm kiếm biểu diễn số lượng tối thiểu stheo các giá trị thấp hơn, bằng cách tìm kiếm một tổng hoặc một sản phẩm. Nếu đó là một sản phẩm, thì nó sẽ kiểm tra hai thành phần và đặt dấu ngoặc quanh chúng nếu chúng là tổng. Kiểm tra đó được thực hiện trong chức năng F, để lưu byte (vì nó phải được thực hiện hai lần, cho hai yếu tố).

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.