Các số Bernoulli (cụ thể là các số Bernoulli thứ hai) được xác định theo định nghĩa đệ quy sau:
Trường hợp biểu thị một sự kết hợp .
Cho một số nguyên không âm m
làm đầu vào, xuất đại diện thập phân HOẶC một phần giảm cho m
số Bernoulli thứ hai. Nếu bạn xuất một biểu diễn thập phân, bạn phải có ít nhất 6 chữ số thập phân (chữ số sau dấu thập phân) của độ chính xác và nó phải chính xác khi được làm tròn đến 6 chữ số thập phân. Ví dụ, cho m = 2
, 0.166666523
được chấp nhận bởi vì nó làm tròn đến 0.166667
. 0.166666389
không được chấp nhận, bởi vì nó làm tròn đến 0.166666
. Số 0 Trailing có thể được bỏ qua. Ký hiệu khoa học có thể được sử dụng cho các biểu diễn thập phân.
Dưới đây là đầu vào và đầu ra dự kiến cho m
tối đa và bao gồm 60, theo ký hiệu khoa học được làm tròn đến 6 chữ số thập phân và dưới dạng phân số giảm:
0 -> 1.000000e+00 (1/1)
1 -> 5.000000e-01 (1/2)
2 -> 1.666667e-01 (1/6)
3 -> 0.000000e+00 (0/1)
4 -> -3.333333e-02 (-1/30)
5 -> 0.000000e+00 (0/1)
6 -> 2.380952e-02 (1/42)
7 -> 0.000000e+00 (0/1)
8 -> -3.333333e-02 (-1/30)
9 -> 0.000000e+00 (0/1)
10 -> 7.575758e-02 (5/66)
11 -> 0.000000e+00 (0/1)
12 -> -2.531136e-01 (-691/2730)
13 -> 0.000000e+00 (0/1)
14 -> 1.166667e+00 (7/6)
15 -> 0.000000e+00 (0/1)
16 -> -7.092157e+00 (-3617/510)
17 -> 0.000000e+00 (0/1)
18 -> 5.497118e+01 (43867/798)
19 -> 0.000000e+00 (0/1)
20 -> -5.291242e+02 (-174611/330)
21 -> 0.000000e+00 (0/1)
22 -> 6.192123e+03 (854513/138)
23 -> 0.000000e+00 (0/1)
24 -> -8.658025e+04 (-236364091/2730)
25 -> 0.000000e+00 (0/1)
26 -> 1.425517e+06 (8553103/6)
27 -> 0.000000e+00 (0/1)
28 -> -2.729823e+07 (-23749461029/870)
29 -> 0.000000e+00 (0/1)
30 -> 6.015809e+08 (8615841276005/14322)
31 -> 0.000000e+00 (0/1)
32 -> -1.511632e+10 (-7709321041217/510)
33 -> 0.000000e+00 (0/1)
34 -> 4.296146e+11 (2577687858367/6)
35 -> 0.000000e+00 (0/1)
36 -> -1.371166e+13 (-26315271553053477373/1919190)
37 -> 0.000000e+00 (0/1)
38 -> 4.883323e+14 (2929993913841559/6)
39 -> 0.000000e+00 (0/1)
40 -> -1.929658e+16 (-261082718496449122051/13530)
41 -> 0.000000e+00 (0/1)
42 -> 8.416930e+17 (1520097643918070802691/1806)
43 -> 0.000000e+00 (0/1)
44 -> -4.033807e+19 (-27833269579301024235023/690)
45 -> 0.000000e+00 (0/1)
46 -> 2.115075e+21 (596451111593912163277961/282)
47 -> 0.000000e+00 (0/1)
48 -> -1.208663e+23 (-5609403368997817686249127547/46410)
49 -> 0.000000e+00 (0/1)
50 -> 7.500867e+24 (495057205241079648212477525/66)
51 -> 0.000000e+00 (0/1)
52 -> -5.038778e+26 (-801165718135489957347924991853/1590)
53 -> 0.000000e+00 (0/1)
54 -> 3.652878e+28 (29149963634884862421418123812691/798)
55 -> 0.000000e+00 (0/1)
56 -> -2.849877e+30 (-2479392929313226753685415739663229/870)
57 -> 0.000000e+00 (0/1)
58 -> 2.386543e+32 (84483613348880041862046775994036021/354)
59 -> 0.000000e+00 (0/1)
60 -> -2.139995e+34 (-1215233140483755572040304994079820246041491/56786730)
Tham chiếu thực hiện (trong Python 3):
def factorial(n):
if n < 1:
return 1
else:
return n * factorial(n - 1)
def combination(m,k):
if k <= m:
return factorial(m)/(factorial(k) * factorial(m - k))
else:
return 0
def Bernoulli(m):
if m == 0:
return 1
else:
t = 0
for k in range(0, m):
t += combination(m, k) * Bernoulli(k) / (m - k + 1)
return 1 - t
Quy tắc
- Đây là mã golf , vì vậy mã ngắn nhất tính bằng byte thắng
- Bạn không được sử dụng bất kỳ hàm nào, có sẵn hoặc được bao gồm trong một thư viện bên ngoài, tính toán loại số Bernoulli hoặc đa thức Bernoulli.
- Câu trả lời của bạn phải đưa ra đầu ra chính xác cho tất cả các đầu vào lên đến và bao gồm 60.
Bảng xếp hạng
Đoạn trích ở cuối bài này tạo ra bảng xếp hạng từ các câu trả lời a) dưới dạng danh sách các giải pháp ngắn nhất cho mỗi ngôn ngữ và b) dưới dạng bảng xếp hạng tổng thể.
Để đảm bảo rằng câu trả lời của bạn hiển thị, vui lòng bắt đầu câu trả lời của bạn bằng một tiêu đề, sử dụng mẫu Markdown sau:
## Language Name, N bytes
nơi N
là kích thước của trình của bạn. Nếu bạn cải thiện điểm số của mình, bạn có thể giữ điểm số cũ trong tiêu đề, bằng cách đánh bại chúng thông qua. Ví dụ:
## Ruby, <s>104</s> <s>101</s> 96 bytes
Nếu bạn muốn bao gồm nhiều số trong tiêu đề của mình (ví dụ: vì điểm của bạn là tổng của hai tệp hoặc bạn muốn liệt kê riêng các hình phạt cờ của thông dịch viên), hãy đảm bảo rằng điểm thực tế là số cuối cùng trong tiêu đề:
## Perl, 43 + 2 (-p flag) = 45 bytes
Bạn cũng có thể đặt tên ngôn ngữ thành liên kết sau đó sẽ hiển thị trong đoạn trích:
## [><>](http://esolangs.org/wiki/Fish), 121 bytes