Hình ảnh ẩn và tìm kiếm


15

Trong thử thách này, bạn cần tìm một pixel cụ thể trong một bức ảnh (được chụp bằng máy ảnh thật).

Bạn được thông qua một tuple (R, G, B) và một hình ảnh, và bạn cần trả về một điểm (x, y) trong hình ảnh phù hợp với màu RGB đã cho . Hình ảnh có thể có nhiều điểm phù hợp với màu sắc; bạn chỉ cần tìm 1.

Các thách thức là những gì bạn cần để làm điều đó khi đọc càng ít pixel càng tốt . Điểm của bạn sẽ là tổng số pixel được đọc trong tất cả các trường hợp kiểm tra.

Nếu bạn muốn, bạn có thể đọc toàn bộ hình ảnh thành một mảng các giá trị RGB, miễn là bạn không thực hiện bất kỳ xử lý nào trên các pixel. Tôi cho phép điều này hoàn toàn cho mục đích hiệu quả. Ví dụ, trong Python, list(Image.open("image_name+".jpg").convert("RGB").getdata())là ok.

Địa điểm mã hóa không được phép. Thuật toán của bạn sẽ hoạt động tốt hơn là chỉ các trường hợp thử nghiệm được liệt kê bên dưới. Bạn không được phép lưu dữ liệu giữa các trường hợp thử nghiệm. Tôi đã chọn các giá trị RGB xuất hiện không thường xuyên ( <10) trong ảnh (trong trường hợp tạo ra sự khác biệt cho thuật toán của bạn). Nếu bạn đang sử dụng tính ngẫu nhiên trong thuật toán của mình, vui lòng đặt hạt giống để điểm số của bạn không đổi.

Hình ảnh có thể được tìm thấy trên Github

Các trường hợp thử nghiệm:

image_name: 
(r, g, b) [all possible answers]

barn:
(143,91,33) [(887,1096),(2226,1397),(2007,1402),(2161,1508),(1187,1702)]
(53,35,59) [(1999,1260)]
(20,24,27) [(1328,1087),(154,1271)]
(167,148,176) [(1748,1204)]
(137,50,7) [(596,1498)]
(116,95,94) [(1340,1123)]
(72,49,59) [(1344,857),(1345,858),(1380,926),(1405,974),(1480,1117)]
(211,163,175) [(1963,745)]
(30,20,0) [(1609,1462),(1133,1477),(1908,1632)]
(88,36,23) [(543,1494),(431,1575)]
daisy:
(21,57,91) [(1440,1935),(2832,2090),(2232,2130),(1877,2131),(1890,2132)]
(201,175,140) [(1537,1749),(2319,1757)]
(169,160,0) [(2124,759)]
(113,123,114) [(1012,994),(2134,1060),(1803,1183),(1119,1335)]
(225,226,231) [(3207,829),(3256,889),(3257,889),(1434,981),(2599,1118),(2656,1348),(2656,1351)]
(17,62,117) [(2514,3874),(2336,3885)]
(226,225,204) [(3209,812)]
(119,124,146) [(2151,974),(2194,1021),(2194,1022),(2202,1034),(2812,1500)]
(2,63,120) [(2165,3881),(2326,3882),(2330,3882),(2228,3887)]
(200,167,113) [(1453,1759)]
dandelion:
(55,2,46) [(667,825),(668,825)]
(95,37,33) [(1637,1721),(1625,1724),(1405,1753),(2026,2276),(2016,2298)]
(27,41,50) [(1267,126),(424,519),(2703,1323),(1804,3466)]
(58,92,129) [(2213,3274)]
(136,159,105) [(1300,2363),(2123,2645),(1429,3428),(1430,3432),(1417,3467),(1393,3490),(1958,3493)]
(152,174,63) [(2256,2556)]
(78,49,19) [(2128,2836)]
(217,178,205) [(2736,3531)]
(69,95,130) [(870,305),(493,460),(2777,1085),(2791,1292),(2634,3100)]
(150,171,174) [(2816,1201),(2724,2669),(1180,2706),(1470,3215),(1471,3215)]
gerbera:
(218,186,171) [(4282,1342)]
(180,153,40) [(4596,1634),(4369,1682),(4390,1708),(4367,1750)]
(201,179,119) [(4282,1876),(4479,1928)]
(116,112,149) [(5884,252),(4168,371),(4169,372),(4164,384),(5742,576)]
(222,176,65) [(4232,1548)]
(108,129,156) [(5341,3574),(5339,3595),(5302,3734)]
(125,99,48) [(4548,1825),(4136,1932),(5054,2013),(5058,2023),(5058,2035),(5055,2050),(5031,2073)]
(170,149,32) [(4461,1630),(4520,1640)]
(156,185,203) [(3809,108)]
(103,67,17) [(4844,1790)]
hot-air:
(48,21,36) [(1992,1029),(2005,1030),(2015,1034),(2018,1036)]
(104,65,36) [(3173,1890),(3163,1893)]
(169,89,62) [(4181,931),(4210,938),(4330,1046),(4171,1056),(3117,1814)]
(68,59,60) [(1872,220),(1874,220),(1878,220),(1696,225),(3785,429)]
(198,96,74) [(4352,1057)]
(136,43,53) [(1700,931)]
(82,42,32) [(4556,961),(4559,973),(4563,989),(4563,990),(4441,1004),(4387,1126),(4378,1128)]
(192,132,72) [(1399,900),(3105,1822),(3104,1824),(3105,1824),(3107,1826),(3107,1827),(3104,1839),(3119,1852)]
(146,21,63) [(1716,993)]
(125,64,36) [(4332,937)]
in-input:
(204,90,1) [(1526,1997),(1385,2145),(4780,2807),(4788,3414)]
(227,163,53) [(1467,1739),(2414,1925),(2441,2198),(134,2446)]
(196,179,135) [(3770,2740),(1110,3012),(3909,3216),(1409,3263),(571,3405)]
(208,59,27) [(1134,1980),(4518,2108),(4515,2142)]
(149,70,1) [(4499,1790),(2416,2042),(1338,2150),(3731,2408),(3722,2409),(4400,3618)]
(168,3,7) [(987,402),(951,432),(1790,1213),(1790,1214),(1848,1217),(4218,1840),(4344,1870),(1511,1898)]
(218,118,4) [(3857,1701),(1442,1980),(1411,2156),(25,2606)]
(127,153,4) [(3710,2813)]
(224,230,246) [(2086,160),(2761,222),(4482,1442)]
(213,127,66) [(4601,1860),(4515,2527),(4757,2863)]
klatschmohn:
(170,133,19) [(1202,2274),(1202,2275),(957,2493),(1034,2633),(3740,3389),(3740,3391),(3683,3439)]
(162,92,4) [(489,2854)]
(159,175,104) [(3095,2475),(3098,2481)]
(199,139,43) [(1956,3055)]
(171,169,170) [(3669,1487),(3674,1490),(3701,1507)]
(184,115,58) [(1958,2404)]
(228,169,5) [(1316,2336),(1317,2336)]
(179,165,43) [(3879,2380),(1842,2497),(1842,2498)]
(67,21,6) [(1959,2197),(2157,2317),(2158,2317),(2158,2318),(2116,2373)]
(213,100,106) [(1303,1816)]
tajinaste-rojo:
(243,56,99) [(1811,2876),(1668,4141),(2089,4518),(1981,4732),(1659,4778),(2221,5373),(1779,5598),(2210,5673),(2373,5860)]
(147,157,210) [(1835,1028),(1431,3358)]
(114,37,19) [(1792,3572),(1818,3592)]
(108,117,116) [(2772,4722),(1269,5672),(2512,5811),(2509,5830),(2186,5842),(2186,5846),(2190,5851),(2211,5884)]
(214,197,93) [(1653,4386)]
(163,102,101) [(2226,2832),(2213,3683),(1894,4091),(1875,4117)]
(192,192,164) [(2175,2962),(2206,3667),(2315,3858),(1561,3977),(3039,5037),(3201,5641)]
(92,118,45) [(1881,1704),(1983,1877),(2254,2126),(3753,5862),(3766,5883)]
(145,180,173) [(1826,1585)]
(181,124,105) [(1969,3892)]
turret-arch:
(116,70,36) [(384,648),(516,669)]
(121,115,119) [(2419,958)]
(183,222,237) [(172,601),(183,601),(110,611),(111,617)]
(237,136,82) [(2020,282),(676,383),(748,406),(854,482),(638,497),(647,661),(1069,838),(1809,895),(1823,911)]
(193,199,215) [(1567,919),(1793,1047)]
(33,30,25) [(1307,861),(309,885),(1995,895),(504,1232),(2417,1494)]
(17,23,39) [(1745,1033),(788,1090),(967,1250)]
(192,139,95) [(1445,1337)]
(176,125,98) [(1197,1030)]
(178,83,0) [(2378,1136)]
water-lilies:
(86,140,80) [(2322,2855),(4542,3005),(4540,3006),(4577,3019)]
(218,124,174) [(1910,2457)]
(191,77,50) [(2076,1588)]
(197,211,186) [(4402,1894)]
(236,199,181) [(2154,1836)]
(253,242,162) [(1653,1430)]
(114,111,92) [(1936,2499)]
(111,93,27) [(2301,2423),(2127,2592),(2137,2717),(2147,2717)]
(139,92,102) [(1284,2243),(1297,2258)]
(199,157,117) [(3096,993)]

2
Có bất kỳ mối tương quan trong các hình ảnh chúng tôi sẽ được thử nghiệm? (Hình ảnh có thể bị nhiễu) Nếu không, chắc chắn cách duy nhất sẽ được lấy mẫu ngẫu nhiên cho đến khi pixel chính xác được chọn?
Màu xanh

2
@muddyfish những hình ảnh được chụp bằng máy ảnh thực sự của các đối tượng thực, do đó tối ưu hóa được tìm thấy. Thuật toán của bạn chắc chắn nên nhắm mục tiêu vào hình ảnh, không phải là màu sắc cụ thể tôi đưa ra.
Nathan Merrill

"Trong khi đọc càng ít pixel càng tốt" làm thế nào để bạn xác định điều này?
David

Do sự khác biệt về thư viện và ngôn ngữ, tôi không thể xác định các phương thức được coi là "truy cập". Bạn đang nghĩ về điều gì đặc biệt?
Nathan Merrill

Một giải pháp nên xuất số lượng pixel mà nó đã kiểm tra?
trichoplax

Câu trả lời:


5

Con trăn, điểm: 14.035.624

Điều đầu tiên, đây là mã:

from heapq import heappush, heappop
from PIL import Image
import random

random.seed(1)


def dist(x, y):
    return sum([(x[i] - y[i]) ** 2 for i in range(3)])


def gradient_descent(image_name, c):
    im = Image.open(image_name + '.jpg').convert('RGB')
    L = im.load()
    sx, sy = im.size
    heap = []
    visited = set()
    count = 0
    points = []
    for i in range(0, sx, sx / 98):
        for j in range(0, sy, sy / 98):
            points.append((i, j))
    for x in points:
        heappush(heap, [dist(c, L[x[0], x[1]]), [x[0], x[1]]])
        visited.add((x[0], x[1]))

    while heap:
        if count % 10 == 0:
            x = random.random()
            if x < 0.5:
                n = heap.pop(random.randint(10, 100))
            else:
                n = heappop(heap)
        else:
            n = heappop(heap)
        x, y = n[1]
        c_color = L[x, y]
        count += 1

        if c_color == c:
            p = float(len(visited)) / (sx * sy) * 100
            print('count: {}, percent: {}, position: {}'.format(len(visited), p, (x, y)))
            return len(visited)

        newpoints = []
        newpoints.append((x + 1, y))
        newpoints.append((x - 1, y))
        newpoints.append((x, y + 1))
        newpoints.append((x, y - 1))
        newpoints.append((x + 1, y + 1))
        newpoints.append((x + 1, y - 1))
        newpoints.append((x - 1, y + 1))
        newpoints.append((x - 1, y - 1))

        for p in newpoints:
            if p not in visited:
                try:
                    d = dist(c, L[p[0], p[1]])
                    heappush(heap, [d, [p[0], p[1]]])
                    visited.add(p)
                except IndexError:
                    pass

và đây là một gif cho thấy thuật toán kiểm tra pixel:

Vì vậy, đây là những gì mã này đang làm: Biến heaphàng đợi ưu tiên của (x, y)tọa độ trong ảnh, được sắp xếp theo khoảng cách Euclide của màu tại tọa độ đó với màu đích. Nó được khởi tạo với 10.200 điểm được phân bổ đều trên toàn bộ hình ảnh.

Với heap được khởi tạo, sau đó chúng tôi bật ra điểm với khoảng cách tối thiểu đến màu mục tiêu. Nếu màu tại điểm đó có khoảng cách> 0, nghĩa là, nếu màu tại điểm đó KHÔNG phải là màu đích, chúng ta thêm 8 điểm xung quanh từ đó vào heap. Để đảm bảo rằng một điểm nhất định không được xem xét nhiều hơn một lần, chúng tôi duy trì biến visited, đó là một tập hợp tất cả các điểm đã được kiểm tra cho đến nay.

Thỉnh thoảng, thay vì trực tiếp lấy điểm với khoảng cách màu tối thiểu, chúng tôi sẽ chọn ngẫu nhiên một số điểm khác từ gần đầu hàng đợi. Điều này không thực sự cần thiết, nhưng trong thử nghiệm của tôi, nó sẽ loại bỏ khoảng 1.000.000 pixel so với tổng số điểm. Khi màu mục tiêu được tìm thấy, chúng ta chỉ cần trả về độ dài của visitedtập hợp.

Giống như @Karl Napf, tôi đã bỏ qua các trường hợp thử nghiệm trong đó màu được chỉ định không có trong hình ảnh. Bạn có thể tìm thấy một chương trình trình điều khiển để chạy qua tất cả các trường hợp thử nghiệm tại kho GitHub mà tôi đã tạo cho câu trả lời này.

Dưới đây là kết quả từ mỗi trường hợp thử nghiệm cụ thể:

barn
color: (143, 91, 33), count: 20388 / 0.452483465755%, position: (612, 1131)
color: (53, 35, 59), count: 99606 / 2.21061742643%, position: (1999, 1260)
color: (72, 49, 59), count: 705215 / 15.6512716943%, position: (1405, 974)

daisy
color: (21, 57, 91), count: 37393 / 0.154770711039%, position: (1877, 2131)
color: (169, 160, 0), count: 10659 / 0.0441179100089%, position: (2124, 759)
color: (113, 123, 114), count: 674859 / 2.79326096545%, position: (1119, 1335)
color: (225, 226, 231), count: 15905 / 0.0658312560927%, position: (3256, 889)
color: (17, 62, 117), count: 15043 / 0.0622634131029%, position: (2514, 3874)
color: (226, 225, 204), count: 138610 / 0.573710808362%, position: (1978, 1179)
color: (119, 124, 146), count: 390486 / 1.61623287435%, position: (2357, 917)
color: (2, 63, 120), count: 10063 / 0.0416510487306%, position: (2324, 3882)
color: (200, 167, 113), count: 16393 / 0.06785110224%, position: (1453, 1759)

dandelion
color: (95, 37, 33), count: 10081 / 0.0686342592593%, position: (1625, 1724)
color: (27, 41, 50), count: 2014910 / 13.7180691721%, position: (1267, 126)
color: (58, 92, 129), count: 48181 / 0.328029684096%, position: (1905, 756)
color: (136, 159, 105), count: 10521 / 0.0716299019608%, position: (1416, 3467)
color: (152, 174, 63), count: 10027 / 0.0682666122004%, position: (2256, 2558)
color: (69, 95, 130), count: 201919 / 1.37472086057%, position: (2708, 2943)
color: (150, 171, 174), count: 29714 / 0.202301198257%, position: (1180, 2706)

gerbera
color: (180, 153, 40), count: 21904 / 0.0906612910062%, position: (4459, 1644)
color: (116, 112, 149), count: 14896 / 0.0616549758413%, position: (5884, 252)
color: (222, 176, 65), count: 76205 / 0.315414704215%, position: (4313, 2097)
color: (108, 129, 156), count: 12273 / 0.0507983027994%, position: (5302, 3734)
color: (125, 99, 48), count: 26968 / 0.111621333814%, position: (5054, 2013)
color: (170, 149, 32), count: 89591 / 0.370819746281%, position: (4478, 1647)
color: (156, 185, 203), count: 177373 / 0.734151989118%, position: (4096, 368)
color: (103, 67, 17), count: 11035 / 0.0456741849093%, position: (4844, 1790)

hot-air
color: (48, 21, 36), count: 49711 / 0.24902994992%, position: (1990, 1095)
color: (104, 65, 36), count: 9927 / 0.0497298447599%, position: (3191, 1846)
color: (68, 59, 60), count: 195418 / 0.978957066918%, position: (3948, 470)
color: (82, 42, 32), count: 12216 / 0.0611967143737%, position: (4559, 984)
color: (192, 132, 72), count: 116511 / 0.583668171938%, position: (3103, 1844)

in-input
color: (204, 90, 1), count: 44058 / 0.248299807393%, position: (4695, 2559)
color: (227, 163, 53), count: 12654 / 0.0713147615132%, position: (221, 2384)
color: (196, 179, 135), count: 181534 / 1.02307996812%, position: (1030, 3486)
color: (208, 59, 27), count: 9956 / 0.0561095120614%, position: (4518, 2108)
color: (149, 70, 1), count: 13698 / 0.0771984829467%, position: (3731, 2408)
color: (168, 3, 7), count: 19381 / 0.10922644167%, position: (942, 398)
color: (218, 118, 4), count: 36648 / 0.206538911011%, position: (25, 2606)
color: (224, 230, 246), count: 1076427 / 6.06647185011%, position: (4482, 1442)
color: (213, 127, 66), count: 62673 / 0.353209265712%, position: (4701, 2579)

klatschmohn
color: (170, 133, 19), count: 11535 / 0.0724321530189%, position: (1034, 2633)
color: (162, 92, 4), count: 103795 / 0.651763790429%, position: (489, 2854)
color: (159, 175, 104), count: 10239 / 0.0642941321856%, position: (3098, 2481)
color: (171, 169, 170), count: 10119 / 0.063540611738%, position: (3674, 1490)
color: (184, 115, 58), count: 22425 / 0.140814133632%, position: (1958, 2404)
color: (228, 169, 5), count: 10449 / 0.0656127929688%, position: (1316, 2336)
color: (179, 165, 43), count: 10285 / 0.0645829816905%, position: (1842, 2498)
color: (67, 21, 6), count: 10206 / 0.0640869140625%, position: (2116, 2373)
color: (213, 100, 106), count: 11712 / 0.073543595679%, position: (1303, 1816)

tajinaste-rojo
color: (243, 56, 99), count: 126561 / 0.5273375%, position: (2241, 5424)
color: (114, 37, 19), count: 11285 / 0.0470208333333%, position: (1818, 3583)
color: (108, 117, 116), count: 33855 / 0.1410625%, position: (1269, 5672)
color: (163, 102, 101), count: 1058090 / 4.40870833333%, position: (1546, 4867)
color: (192, 192, 164), count: 10118 / 0.0421583333333%, position: (1919, 3171)
color: (92, 118, 45), count: 13431 / 0.0559625%, position: (3766, 5883)
color: (145, 180, 173), count: 1207713 / 5.0321375%, position: (1863, 955)

turret-arch
color: (116, 70, 36), count: 145610 / 3.23161258822%, position: (96, 671)
color: (183, 222, 237), count: 11704 / 0.259754094722%, position: (140, 604)
color: (237, 136, 82), count: 60477 / 1.34220338231%, position: (1063, 993)
color: (193, 199, 215), count: 359671 / 7.98240046163%, position: (2259, 953)
color: (33, 30, 25), count: 148195 / 3.28898308846%, position: (1307, 861)
color: (17, 23, 39), count: 10601 / 0.235274535044%, position: (2080, 1097)
color: (192, 139, 95), count: 219732 / 4.87664787607%, position: (1127, 970)
color: (176, 125, 98), count: 2471787 / 54.8578942696%, position: (147, 734)

water-lilies
color: (86, 140, 80), count: 10371 / 0.0717376936238%, position: (4542, 3005)
color: (218, 124, 174), count: 25655 / 0.177459312498%, position: (1910, 2457)
color: (197, 211, 186), count: 1144341 / 7.91557073177%, position: (4402, 1894)
color: (253, 242, 162), count: 14174 / 0.0980435897622%, position: (1672, 1379)
color: (111, 93, 27), count: 10405 / 0.0719728764975%, position: (2147, 2717)
color: (199, 157, 117), count: 10053 / 0.0695380420403%, position: (3096, 993)

Total: 14035624

2
Đây là một câu trả lời thực sự tốt. Thuật toán đẹp quá.
niemiro

1
Đó là tìm kiếm hàng xóm gần nhất với nhiều hạt giống là tuyệt vời! Tôi cũng đã cân nhắc sử dụng BFS qua DFS với một đống giống như bạn, nhưng quadsearch quá rộng.
Karl Napf

1

Con trăn, điểm: 396.250.646

  • Mặc dù không có PNG để phân tích cú pháp và vẫn còn vấn đề với các testcase, tôi vẫn quyết định lập trình.
  • Những mẫu thử mà giá trị không có trong ảnh bị bỏ qua (được kiểm tra theo tìm kiếm tuyến tính truyền thống, có số điểm là 544.017.431 )
from PIL import Image

def dist(x,y):
 d = 0
 for i in range(3):
  d += (x[i]-y[i])**2
 return d

def mid(x,y):
 return (x+y)/2

class Finder:
 def __init__(self, image_name, c):
  self.image_name = image_name,
  self.c = c
  self.found = False
  self.position = None
  self.im = Image.open(image_name+".jpg").convert("RGB")
  self.L = self.im.load()
  self.visited = set()

 def quadsearch(self,x0,x1,y0,y1):
  if x0==x1 and y0==y1: return
  xm=mid(x0,x1)
  ym=mid(y0,y1)
  R = [
   (x0,xm,y0,ym),
   (xm,x1,y0,ym),
   (x0,xm,ym,y1),
   (xm,x1,ym,y1),
   ]
  P = [(mid(t[0],t[1]), mid(t[2],t[3])) for t in R]
  DR = []
  for i in range(len(P)):
   p = P[i]
   if p in self.visited: continue
   self.visited.add(p)
   u = self.L[p[0], p[1]]
   d = dist(u, self.c)
   if d == 0:
    self.found = True
    self.position = (p[0], p[1])
    return
   DR.append((d,R[i]))
  S = sorted(range(len(DR)), key=lambda k: DR[k][0])
  for i in S:
   if self.found == True: return
   r = DR[i][1]
   self.quadsearch(r[0], r[1], r[2], r[3])

 def start(self):
  sx,sy = self.im.size
  self.quadsearch(0,sx,0,sy)

 def result(self):
  if self.found:
   count = len(self.visited)
   sx,sy = self.im.size
   ratio = float(count)/(sx*sy)
   print len(self.visited), ratio, self.position, self.L[self.position[0], self.position[1]], "=", self.c
  else:
   print self.c, "not found"

if __name__ == "__main__":
 image_name="turret-arch"
 c=(116,70,36)
 F = Finder(image_name, c)
 F.start()
 F.result()

Nó là một tìm kiếm bốn phần đệ quy. Đôi khi nó tìm thấy giá trị chính xác trong một vài phần trăm, đôi khi hơn 75%. Dưới đây là kết quả cho tất cả các testcase:

pixels_visited, percentage, (position) (RGB at position) = (RGB searched)

tajinaste-rojo
1500765 0.062531875 (2329, 5146) (243, 56, 99) = (243, 56, 99)
(147, 157, 210) not found
335106 0.01396275 (2116, 5791) (114, 37, 19) = (114, 37, 19)
1770396 0.0737665 (1269, 5672) (108, 117, 116) = (108, 117, 116)
(214, 197, 93) not found
8086276 0.336928166667 (1546, 4867) (163, 102, 101) = (163, 102, 101)
12859 0.000535791666667 (1476, 4803) (192, 192, 164) = (192, 192, 164)
7505961 0.312748375 (3766, 5883) (92, 118, 45) = (92, 118, 45)
15057489 0.627395375 (1871, 1139) (145, 180, 173) = (145, 180, 173)
(181, 124, 105) not found
in-input
35754 0.00201500551852 (4695, 2559) (204, 90, 1) = (204, 90, 1)
5029615 0.283456451895 (10, 2680) (227, 163, 53) = (227, 163, 53)
6986547 0.393744217722 (1383, 3446) (196, 179, 135) = (196, 179, 135)
1608341 0.090642053775 (4518, 2108) (208, 59, 27) = (208, 59, 27)
581774 0.0327873194757 (3750, 2798) (149, 70, 1) = (149, 70, 1)
1302581 0.0734101891628 (4374, 1941) (168, 3, 7) = (168, 3, 7)
6134761 0.345739701008 (25, 2606) (218, 118, 4) = (218, 118, 4)
(127, 153, 4) not found
9760033 0.550050913352 (4482, 1442) (224, 230, 246) = (224, 230, 246)
212816 0.0119937745268 (4701, 2579) (213, 127, 66) = (213, 127, 66)
water-lilies
5649260 0.390767412093 (4577, 3019) (86, 140, 80) = (86, 140, 80)
12600699 0.871608412215 (1910, 2457) (218, 124, 174) = (218, 124, 174)
(191, 77, 50) not found
3390653 0.234536328318 (4402, 1894) (197, 211, 186) = (197, 211, 186)
(236, 199, 181) not found
7060220 0.488365537823 (1672, 1379) (253, 242, 162) = (253, 242, 162)
(114, 111, 92) not found
6852380 0.473988947097 (2147, 2717) (111, 93, 27) = (111, 93, 27)
(139, 92, 102) not found
14105709 0.975712111261 (3096, 993) (199, 157, 117) = (199, 157, 117)
dandelion
(55, 2, 46) not found
9094264 0.619162854031 (1637, 1721) (95, 37, 33) = (95, 37, 33)
2358912 0.16060130719 (1526, 3129) (27, 41, 50) = (27, 41, 50)
11729837 0.798600013617 (1905, 756) (58, 92, 129) = (58, 92, 129)
6697060 0.455954520697 (2246, 2685) (136, 159, 105) = (136, 159, 105)
6429635 0.437747480937 (2148, 2722) (152, 174, 63) = (152, 174, 63)
(78, 49, 19) not found
(217, 178, 205) not found
80727 0.00549611928105 (2481, 3133) (69, 95, 130) = (69, 95, 130)
239962 0.0163372821351 (2660, 917) (150, 171, 174) = (150, 171, 174)
turret-arch
210562 0.0467313240712 (725, 655) (116, 70, 36) = (116, 70, 36)
(121, 115, 119) not found
2548703 0.565649385237 (140, 604) (183, 222, 237) = (183, 222, 237)
150733 0.033453104887 (2165, 601) (237, 136, 82) = (237, 136, 82)
3458188 0.767497003862 (2259, 953) (193, 199, 215) = (193, 199, 215)
2430256 0.539361711572 (265, 1222) (33, 30, 25) = (33, 30, 25)
638995 0.141816103689 (1778, 1062) (17, 23, 39) = (17, 23, 39)
2506522 0.556287895601 (1127, 970) (192, 139, 95) = (192, 139, 95)
1344400 0.298370988504 (147, 734) (176, 125, 98) = (176, 125, 98)
(178, 83, 0) not found
hot-air
17474837 0.875411434688 (1992, 1029) (48, 21, 36) = (48, 21, 36)
1170064 0.0586149905099 (3191, 1846) (104, 65, 36) = (104, 65, 36)
(169, 89, 62) not found
11891624 0.595717352134 (3948, 470) (68, 59, 60) = (68, 59, 60)
(198, 96, 74) not found
(136, 43, 53) not found
12476811 0.625032612198 (4387, 1126) (82, 42, 32) = (82, 42, 32)
4757856 0.238347376116 (3105, 1822) (192, 132, 72) = (192, 132, 72)
(146, 21, 63) not found
(125, 64, 36) not found
daisy
5322196 0.220287235367 (2171, 2128) (21, 57, 91) = (21, 57, 91)
(201, 175, 140) not found
22414990 0.9277629343 (2124, 759) (169, 160, 0) = (169, 160, 0)
20887184 0.864526601043 (1119, 1335) (113, 123, 114) = (113, 123, 114)
595712 0.0246566923794 (2656, 1349) (225, 226, 231) = (225, 226, 231)
3397561 0.140626034757 (2514, 3874) (17, 62, 117) = (17, 62, 117)
201068 0.00832226281046 (1978, 1179) (226, 225, 204) = (226, 225, 204)
18693250 0.773719036752 (2357, 917) (119, 124, 146) = (119, 124, 146)
3091040 0.127939041706 (2165, 3881) (2, 63, 120) = (2, 63, 120)
3567932 0.147677739839 (1453, 1759) (200, 167, 113) = (200, 167, 113)
barn
314215 0.0697356740202 (784, 1065) (143, 91, 33) = (143, 91, 33)
2448863 0.543491277908 (1999, 1260) (53, 35, 59) = (53, 35, 59)
(20, 24, 27) not found
(167, 148, 176) not found
(137, 50, 7) not found
(116, 95, 94) not found
2042891 0.453391406631 (1345, 858) (72, 49, 59) = (72, 49, 59)
(211, 163, 175) not found
(30, 20, 0) not found
(88, 36, 23) not found
klatschmohn
3048249 0.191409829222 (3683, 3439) (170, 133, 19) = (170, 133, 19)
1057649 0.0664133456509 (489, 2854) (162, 92, 4) = (162, 92, 4)
2058022 0.129230138206 (3095, 2475) (159, 175, 104) = (159, 175, 104)
(199, 139, 43) not found
2060805 0.129404892156 (3674, 1490) (171, 169, 170) = (171, 169, 170)
7725501 0.485110247577 (1958, 2404) (184, 115, 58) = (184, 115, 58)
2986734 0.187547095028 (1316, 2336) (228, 169, 5) = (228, 169, 5)
497709 0.0312528257017 (3879, 2379) (179, 165, 43) = (179, 165, 43)
3996978 0.250983720944 (2157, 2318) (67, 21, 6) = (67, 21, 6)
3332106 0.209234167028 (1303, 1816) (213, 100, 106) = (213, 100, 106)
gerbera
(218, 186, 171) not found
9445576 0.390955128952 (4377, 1750) (180, 153, 40) = (180, 153, 40)
(201, 179, 119) not found
6140398 0.254152853347 (5742, 576) (116, 112, 149) = (116, 112, 149)
6500717 0.269066561215 (4233, 1541) (222, 176, 65) = (222, 176, 65)
13307056 0.550782905612 (5302, 3734) (108, 129, 156) = (108, 129, 156)
13808847 0.571552180573 (5058, 2023) (125, 99, 48) = (125, 99, 48)
9454870 0.391339810307 (4478, 1647) (170, 149, 32) = (170, 149, 32)
2733978 0.113160142012 (4096, 368) (156, 185, 203) = (156, 185, 203)
11848606 0.490417237301 (4844, 1790) (103, 67, 17) = (103, 67, 17)
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.