Định nghĩa
Xác định mảng thứ n của chuỗi CURR như sau.
Bắt đầu với mảng singleton A = [n] .
Với mỗi số nguyên k trong A , thay thế mục k bằng số tự nhiên k , đếm từ 1 đến k .
Lặp lại bước trước n - 1 lần nữa.
Ví dụ: nếu n = 3 , chúng ta bắt đầu với mảng [3] .
Chúng tôi thay 3 bằng 1, 2, 3 , cho năng suất [1, 2, 3] .
Bây giờ chúng ta thay thế 1 , 2 và 3 bằng 1 ; 1, 2 và 1, 2, 3 (tương ứng), mang lại [1, 1, 2, 1, 2, 3] .
Cuối cùng, chúng tôi thực hiện các thay thế tương tự như trong bước trước cho tất cả sáu số nguyên trong mảng, mang lại [1, 1, 1, 2, 1, 1, 2, 1, 2, 3] . Đây là mảng CURR thứ ba.
Bài tập
Viết chương trình của hàm, với số nguyên n dương hoàn toàn làm đầu vào, tính toán mảng CURR thứ n .
Đầu ra phải là một danh sách phẳng của một số loại (và mảng được trả về từ một hàm, biểu diễn chuỗi của cú pháp mảng ngôn ngữ của bạn, được phân tách bằng khoảng trắng, v.v.).
Đây là mã golf . Có thể mã ngắn nhất trong byte giành chiến thắng!
Các trường hợp thử nghiệm
1 -> [1]
2 -> [1, 1, 2]
3 -> [1, 1, 1, 2, 1, 1, 2, 1, 2, 3]
4 -> [1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4]
5 -> [1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5]
6 -> [1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6]
[2]
) chứ không phải là một số nguyên không?