I tried construct DFA for this NFA
∑ - alphabet set
Q -states set
σ(Q×(∑∪ϵ))→P(Q) state func
q0=q0
F⊆Q,F={q0}
Because every NFA has equal DFA lets construct
DFA M′ for this given NFA.
alphabet - the same
Q′=P(Q) - states
Current state is R∈P(Q)
E(R) - epsilon closure return set of states reachable over zero or more ϵ - connections for every r∈R
σ′(R,a)=⋃r∈RE(σ(r,a)) -transitions
q′0=E({q0})
F′=P(Q)÷F
Some compute on this FSM
1. ϵ on input: q′0=E({q0})={q0,q1} initial state include q1 so FSM accept ϵ
2. 0∗ on input: σ′({q0,q1},0)=E(σ(q0,0))∪E(σ(q1,0))={q0,q1}∪{}={q0,q1}
so FSM accept 0∗
at least {ϵ,0∗}⊂L(M′)
Thanks to David Richerby