Ý định ban đầu cho việc tạo ra phép tính Lambda là gì?


22

Tôi đã đọc rằng ban đầu, Giáo hội đề xuất -calculus như là một phần trong bài viết Định đề Logic của ông (đây là một bài đọc dày đặc). Nhưng Kleene đã chứng minh "hệ thống" của mình không nhất quán sau đó, Church đã trích xuất những điều liên quan cho công việc của mình về "khả năng tính toán hiệu quả" và từ bỏ công việc trước đây về logic.λ

Vì vậy, như tôi hiểu nó, -Hệ thống và ký hiệu của nó mất dạng như một phần của một cái gì đó để làm với logic. Giáo hội ban đầu đã cố gắng đạt được điều gì mà anh ấy đã từ bỏ sau đó? Những lý do ban đầu để tạo ra là gì λ -calculus?λλ


1
Typo trong tiêu đề ...
user11153

Câu trả lời:


26

Ông muốn tạo ra một hệ thống chính thức cho các nền tảng của logic và toán học đơn giản hơn lý thuyết loại của Russell và lý thuyết tập hợp của Zermelo.

Ý tưởng cơ bản là thêm hằng số vào phép tính lambda chưa được xử lý (hoặc logic kết hợp) và giải thích X Z khi diễn tả " Z thỏa mãn vị ngữ X " và Ξ X Y khi biểu thị " X Y ". Với các quy tắc thể hiện những ý định này, người ta có thể giải thích -fragment của logic vị ngữ trực giác và sự hiểu biết không hạn chế, vấn đề duy nhất là do nghịch lý của Curry, mọi X đều có thể dẫn xuất được.ΞXZZXΞXYXYX

Xem p. 7 trong số:

Cardone và Hindley, Lịch sử Lambda-tính toán và Logic kết hợp , 2006: http://www.users.waitrose.com/~hindley/SomePapers_PDFs/2006CarHin,HistlamRp.pdf

Cũng như giới thiệu về:

Barendregt, Bunder và Dekkers, Các hệ thống logic kết hợp hoàn hảo cho tính toán đề xuất và dự đoán bậc nhất , JSL 58-3 (1993): http://ftp.cs.ru.nl/CompMath.Found/ICL1.ps


8
"Vấn đề duy nhất là do nghịch lý của Curry, mọi XYYM=M(YM)MY(¬)ϕϕ¬ϕ λ
cody

2

Tôi không chắc liệu đây có phải là một phần của động lực tạo ra phép tính lambda hay không, nhưng phép tính lambda đã được sử dụng để giải quyết Entscheidungsprobols , được Hilbert đưa ra vào năm 1928. Turing đã giải quyết độc lập Entscheidungsprobols bằng cách giới thiệu máy Turing.

Từ bài viết trên Wikipedia về Entscheidungspropet:

Năm 1936, Alonzo Church và Alan Turing đã xuất bản các bài báo độc lập [2] cho thấy rằng một giải pháp chung cho Entscheidungsprobols là không thể, giả sử rằng khái niệm trực quan về "tính toán hiệu quả" được nắm bắt bởi các chức năng được tính toán bằng máy Turing (hoặc tương đương, bởi những biểu hiện trong phép tính lambda).


1
Đó là "hậu quả" của việc tạo ra phép tính Lambda trước đó. Ông chỉ sử dụng lại một phần quan trọng của nó để cung cấp một định nghĩa cho khả năng tính toán hiệu quả.
Tiến sĩ
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.