Đo điện trở của tụ điện - kết quả không mong muốn


8

Tôi đang cố gắng đo trở kháng ( ) của C1 trong mạch RC được hiển thị bên dưới, nhưng tôi nhận được một số kết quả mà tôi không thể giải thích.Rx

sơ đồ

mô phỏng mạch này - Sơ đồ được tạo bằng phép đo CircuitLab :
Trên VM1 và VM2 tôi đo điện áp bằng cách lấy liên tiếp một mẫu điểm trên 4 ms trên mỗi kênh sau đó tôi tính RMS. (Tôi đang sử dụng thẻ DAQ đa kênh cho đầu ra và đầu vào. Tôi không thể tìm thấy ký hiệu, do đó các VM tương tự). Sử dụng định luật Ohm tôi tính R x :104

Rx

Rx=R1VM2VM1VM1

Dòng điện áp dụng là một đường cong hình sin 0,5V trong đó tôi thay đổi tần số trong khoảng 1, 5, 10, 50 và 100 kHz. Nó được bật trong khoảng 2-3 giây trong khi đọc liên tiếp hai kênh.

Đối với mỗi tần số, tôi thực hiện 10 phép đo và lấy giá trị trung bình của các phép đo đó.

Dự kiến:
Tôi mong đợi các giá trị sẽ như sau: trong đó f là tần số và C công suất. Fx tại 1 kHz cho một0,1μFtụ tôi sẽ nhận được1591,59Ω. Nhưng đo lường của tôi ở tần số đó là khoảng500Ω

Rx=12πfC
0.1μF1591.59Ω500Ω

Các phép đo:
Đây là các phép đo của tôi cho các tụ điện khác nhau: nhập mô tả hình ảnh ở đây

Tại sao số của tôi đến nay?

Nếu tôi để một cái gì đó xin vui lòng cho tôi biết và tôi sẽ thêm nó vào bài viết.
Bất kỳ lời khuyên, nhận xét hoặc ý kiến ​​được đánh giá cao.

Cập nhật
Tôi đã thực hiện các tính toán một lần nữa nhờ các câu trả lời hữu ích. Nó phù hợp hơn rất nhiều bây giờ: nhập mô tả hình ảnh ở đây

Dường như có một số sai lệch ngày càng tăng, liệu có một lý do rõ ràng cho điều này?


1
XC=12πfC

@jonk Có phải là gạch chân sự phụ thuộc tần số, đó không phải là trường hợp cho một điện trở đơn giản? Có phải để phân biệt trở kháng với kháng?
Alex

Đã có rất nhiều bài viết về chủ đề này và đã có câu trả lời ở đây. Nhưng tôi sẽ thêm một cách tiếp cận khác cho bạn để tránh những thứ lạ mắt và xem nó có giúp ích gì không.
jonk

Câu trả lời:


8

XC=1591.591¯Ωf=1kHzC=100nFC

Hãy xem liệu chúng ta có thể tìm ra những gì nên làm và tìm ra những gì bạn đã làm.


RXCXLRXCở phía tiêu cực của trục y và điều này tạo thành hai cạnh của một tam giác vuông. Độ dài của cạnh huyền là độ lớn của "trở kháng phức tạp".

Tôi đang ăn cắp hình ảnh sau đây từ đây :

nhập mô tả hình ảnh ở đây

Hình ảnh trên cung cấp cho bạn một hình ảnh về những gì tôi đang đề xuất.

(1797Ω)2+(1591.59Ω)22400Ω

Hiện nay. Hãy xem nào. Có lẽ bạn đã tìm ra phương trình của mình để nó trừ đi gần của bạn1800Ω600ΩXC

Nhưng vấn đề là bạn đã làm một phép trừ trực tiếp.

500mV380mVR11797Ω500mV380mV400mV567ΩXC


Vì vậy, hãy làm điều này khác đi.

Bạn nên nhận ra rằng phương trình được dẫn xuất theo cách này:

(1)Z=R12+XC2(2)I=VZ(3)VR1=IR1=VR12+XC2R1

Từ những điều trên, bạn có thể giải (3) để có được:

XC=R1(VVR11)(VVR1+1)

V=500mVVR1=380mVXC1537Ω

Mà giống như nó hơn.


9

90

Z=1jωC

j1

90

|VC|2=|VM2|2|VM1|2

1
Hàm tuyệt đối không cần thiết vì các điều khoản được bình phương.
jonk

1
||((j100+0.02)V)210000

1
VCVR

2
@jonk đồng ý; Alex, nếu bạn đang đọc này, đừng nhầm lẫn. Tôi thề, học những pha phức tạp là đáng giá; nó mở ra cả một thế giới.
Marcus Müller

2
@Nat Chính xác là, chữ thường tôi đã có một ý nghĩa trong trường, vì vậy để tránh nhầm lẫn hồi tố j được sử dụng thay thế. Điều này tốt hơn cho những người không cần phải chuyển đổi trường quá thường xuyên.
Kroltan

0

Xc=R1V22V12V12

Sử dụng phương trình này và xem nếu bạn nhận được kết quả tốt hơn.

Một điều bạn cần lưu ý, đó là phương trình này áp dụng cho các mạch "lý tưởng". Trong cuộc sống thực, bạn sẽ thấy rằng các tụ điện, thực hiện trong hành động, có điện trở ngoài phản ứng.

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.