[Chỉnh sửa: Lần thứ 4 là sự quyến rũ, cuối cùng là một điều hợp lý]
nn2(n2+3)t(t(n))+t(t(n−1))t(a)at(a)=a(a+1)/2
i≥jtid(i,j)≥tid(k,l)tid(a,b)a,b
def ascendings(n):
idx = 0
for i in range(1,n+1):
for j in range(1,i+1):
for k in range(1,i):
for l in range(1,k+1):
idx = idx + 1
print(i,j,k,l)
k=i
for l in range(1,j+1):
idx = idx + 1
print(i,j,k,l)
return idx
llk
t(t(n−1))
def mixcendings(n):
idx = 0
for j in range(2,n+1):
for i in range(1,j):
for k in range(1,j):
for l in range(1,k):
print(i,j,k,l)
idx = idx + 1
k=j
for l in range(1,i+1):
print(i,j,k,l)
idx = idx + 1
return idx
Sự kết hợp của cả hai điều này mang lại cho bộ hoàn chỉnh, vì vậy việc đặt cả hai vòng lặp lại với nhau sẽ cho chúng ta bộ chỉ số hoàn chỉnh.
n
Trong python, chúng ta có thể viết iterator sau để cung cấp cho chúng ta các giá trị idx và i, j, k, l cho mỗi kịch bản khác nhau:
def iterate_quad(n):
idx = 0
for i in range(1,n+1):
for j in range(1,i+1):
for k in range(1,i):
for l in range(1,k+1):
idx = idx + 1
yield (idx,i,j,k,l)
#print(i,j,k,l)
k=i
for l in range(1,j+1):
idx = idx + 1
yield (idx,i,j,k,l)
for i in range(2,n+1):
for j in range(1,i):
for k in range(1,i):
for l in range(1,k):
idx = idx + 1
yield (idx,i,j,k,l)
k=i
for l in range(1,j+1):
idx = idx + 1
yield (idx,i,j,k,l)
in3+jn2+kn+l
integer function squareindex(i,j,k,l,n)
integer,intent(in)::i,j,k,l,n
squareindex = (((i-1)*n + (j-1))*n + (k-1))*n + l
end function
integer function generate_order_array(n,arr)
integer,intent(in)::n,arr(*)
integer::total,idx,i,j,k,l
total = n**2 * (n**2 + 3)
reshape(arr,total)
idx = 0
do i=1,n
do j=1,i
do k=1,i-1
do l=1,k
idx = idx+1
arr(idx) = squareindex(i,j,k,l,n)
end do
end do
k=i
do l=1,j
idx = idx+1
arr(idx) = squareindex(i,j,k,l,n)
end do
end do
end do
do i=2,n
do j=1,i-1
do k=1,i-1
do l=1,j
idx = idx+1
arr(idx) = squareindex(i,j,k,l,n)
end do
end do
k=i
do l=1,j
idx = idx+1
arr(idx) = squareindex(i,j,k,l,n)
end do
end do
end do
generate_order_array = idx
end function
Và sau đó lặp lại nó:
maxidx = generate_order_array(n,arr)
do idx=1,maxidx
i = idx/(n**3) + 1
t_idx = idx - (i-1)*n**3
j = t_idx/(n**2) + 1
t_idx = t_idx - (j-1)*n**2
k = t_idx/n + 1
t_idx = t_idx - (k-1)*n
l = t_idx
! now have i,j,k,l, so do stuff
! ...
end do