Đối với một vấn đề khả thi LP, tôi sẽ không sử dụng đơn giản tiêu chuẩn. Các thuật toán đơn giản tiêu chuẩn (hoặc kép) sẽ chỉ truy cập vào các đỉnh của tập hợp khả thi của các vấn đề nguyên thủy (hoặc kép).
Đặt tập hợp khả thi của vấn đề bạn thực sự muốn giải quyết là và giả sử thay vào đó bạn sẽ giải quyết vấn đề ( F ε ):F={x:Ax≤b,x>0}Fε
s.t.minx0Ax≤bx≥ε⋅1.
Giá trị gần đúng nhất của vấn đề bạn muốn giải quyết là , thừa nhận hơi quá nhiều điểm. Vấn đề là ranh giới của bộ chỉnh lưu dương (nghĩa là tập hợp B = { x : x ≥ 0 , ∃ i : x i = 0 } có thể tạo thành một phần ranh giới của tập hợp khả thi của F 0. Chúng tôi muốn như để loại trừ các điểm này. Một cách để làm điều đó là để làm những gì Aron gợi ý, mà là để thiết lập εF0B={x:x≥0,∃i:xi=0}F0εđến một số giá trị dương nhỏ, và sau đó sử dụng bất kỳ thuật toán LP tiêu chuẩn nào. Chiến lược này là một chiến lược tốt, và có thể sẽ hoạt động trong nhiều tình huống khác nhau. Tuy nhiên, nó sẽ thất bại nếu là không khả thi. Chúng ta biết rằng F 0 ⊂ F ⊂ F ε cho tất cả ε > 0 (để ký hiệu lạm dụng và tham khảo một tập khả thi bởi sự cố tương ứng của nó), và nó có thể là ngay cả khi bạn chọn các giá trị dương nhỏ ε , người giải quyết LP sẽ chỉ ra LP của bạn là không thể.FεF0⊂F⊂Fεε>0ε
Đối với một giải LP, tôi muốn sử dụng bất kỳ thuật toán điểm nội thất cho LP mà bắt đầu với một điểm có tính khả thi và khả thi ở lại, đó là một cách khác để loại trừ điểm trong . Bạn không cần phải cung cấp một điểm khả thi cho các thuật toán này; người giải quyết tiêu chuẩn sẽ làm điều đó cho bạn. Các phương pháp như chia tỷ lệ affine, giảm tiềm năng và các phương pháp rào cản thiết lập các LP phụ trợ sẽ tìm ra các giải pháp khả thi và các lần lặp cho các thuật toán này đi qua bên trong khu vực khả thi. Bạn chỉ cần xác định một điểm trong vùng khả thi của mình, miễn là các vấn đề phụ được sử dụng bởi người giải quyết LP xác định điểm khả thi cho vấn đề của bạn và điểm khả thi đó là hoàn toàn tích cực, bạn sẽ ổn thôi. Nếu giải F ε không thành công cho các giá trị dương nhỏ của εBFεε, bạn vẫn có thể sử dụng các phương pháp này để xác định điểm khả thi tích cực hoàn toàn trong .F0
Không sử dụng simplex, tuy nhiên, vì nó sẽ chỉ khám phá các đỉnh của , đó là chính xác những gì bạn muốn tránh làm.Fε