Làm thế nào để tìm hạt nhân chập trong miền tần số?


12

Tôi có hai vectơ dữ liệu không gian (mỗi chiều dài khoảng 2000 phần tử). Một cái là phiên bản chập chững của cái kia. Tôi đang cố gắng xác định hạt nhân sẽ tạo ra một tổ hợp như vậy. Tôi biết rằng tôi có thể làm điều này bằng cách tìm biến đổi Fourier ngược của tỷ lệ biến đổi Fourier của vectơ đầu ra và đầu vào. Thật vậy, khi tôi làm điều này, tôi nhận được ít nhiều hình dạng mà tôi mong đợi. Tuy nhiên, vectơ nhân của tôi có cùng chiều với hai vectơ đầu vào khi trong thực tế, tích chập chỉ sử dụng khoảng một phần năm (~ 300-400) điểm. Thực tế là tôi đang có được hình dạng đúng nhưng số điểm sai khiến tôi nghĩ rằng tôi không sử dụng các hàm ifft và fft khá chính xác. Có vẻ như nếu tôi thực sự làm đúng thì điều này sẽ xảy ra một cách tự nhiên. Hiện tại tôi chỉ đơn giản là làm;

FTInput = fft(in); 
FtOutput = fft(out);
kernel = ifft(FtOutput./FTInput).

Điều này có đúng không và tùy thuộc vào tôi để giải thích vectơ đầu ra một cách chính xác hay tôi đã quá đơn giản hóa nhiệm vụ? Tôi chắc chắn đó là cái sau, tôi chỉ không chắc là ở đâu.


2
Dữ liệu đầu vào của bạn có được đệm không ở cả hai phía theo chiều dài của hạt nhân chập không? Nếu không, bạn sẽ mất thông tin ở đó, đó có thể là lý do cho những cổ vật này.
leftaroundabout

Câu trả lời:


5

Nếu bạn có nhiễu trong tín hiệu của mình, việc phân chia miền Fourier đơn giản sẽ gây ra nhiều lỗi trong kết quả của bạn. Một số cách để tránh điều đó là bằng cách sử dụng cái gọi là FFT kênh kép ( Phần 1Phần 2 ). Tôi cũng có thể đề xuất giải mã thông qua các bộ lọc thích ứng, các bộ lọc LMS hoặc NLMS ([Bình thường hóa] Bình phương tối thiểu) nói riêng rất dễ hiểu không quá đắt về chu kỳ CPU trong trường hợp tín hiệu của bạn dài. Bộ lọc thích ứng LMS rất mạnh mẽ với tiếng ồn.


Điều đó có tác dụng với một lời cảm ơn và tôi phát hiện ra một loại điều hoàn toàn mới mà tôi không biết đã tồn tại.
Bowler

@Phonon là những liên kết làm việc? Đây là một đăng ký cho chính xác là gì?
Spacey

@Mohammad: Đó là để truy cập các bài báo và sách đánh giá kỹ thuật của Brüel & Kjær. Đăng ký là miễn phí và cung cấp quyền truy cập vào nhiều bài viết tốt.
Thor
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.