Mô phỏng CPU MOS 6502


29

Đây là loại cảm hứng từ thử thách Intel 8086 cũng ở đây, nhưng tôi nghĩ thử thách 6502 cũng thú vị.

Các thách thức

Tôi nghĩ rằng đây sẽ là một niềm vui để xem kết quả. Điều này rõ ràng là hướng tới phía tiên tiến hơn của quang phổ. Thách thức là viết trình giả lập CPU 6502 của riêng bạn. Tất nhiên, điều này liên quan đến việc hiểu tập lệnh của nó và định dạng mã hóa của nó. Tài nguyên được liên kết ở dưới cùng của điều này. 6502 là một trong những bộ xử lý trong thế giới thực dễ nhất để mô phỏng. Đối với mục đích của thử thách này, bạn sẽ không cần phải lo lắng về thời gian chu kỳ nếu bạn không muốn - nhưng đó luôn là một điểm cộng để bao gồm!

KHÔNG SAO CHÉP MỌI BẤT K EL MÃ SỐ NÀO !! Tất nhiên, bạn chắc chắn có thể nhìn trộm các trình giả lập khác để giúp bạn hiểu, nhưng không có bản sao và dán! :)

Khi mã của bạn hoạt động, bạn luôn có thể đi xa hơn nếu bạn thích và biến nó thành trình giả lập Apple II, hoặc NES, C64, VIC-20 hoặc bất kỳ hệ thống nào trong số hàng tỷ hệ thống 6502 cũ khác từ trước đó.

Kiểm tra trình giả lập của bạn

Tôi đã biên dịch một bộ thử nghiệm 6502 mà tôi tìm thấy mã nguồn ở đây: http://code.google.com.vn/p/hmc-6502/source/browse/trunk/emu/testvector/ ALLSuiteA.asm

Phiên bản biên dịch của tôi có thể được tải xuống ở đây: http://rubbermallet.org/ ALLSuiteA.zip

Tải nhị phân 48 KB vào không gian bộ nhớ của trình giả lập của bạn ở mức 4000 đô la, để lại 16 KB RAM đọc ghi bên dưới nó. Khi kiểm tra đã thực hiện xong, giá trị trong địa chỉ $ 0210 sẽ là $ FF, nếu CPU của bạn được thông qua. Bạn sẽ biết rằng thử nghiệm đã kết thúc khi bộ đếm chương trình (PC) đã đạt đến địa chỉ $ 45C0.

Các thử nghiệm khác cũng có sẵn ở đây: http://visual6502.org/wiki/index.php?title=6502TestPrograms

Làm một cái gì đó tương tác nhiều hơn với nó

Khi CPU của bạn hoạt động, có lẽ bạn sẽ muốn làm điều gì đó thú vị hơn là nhìn chằm chằm vào đầu ra thử nghiệm! Tôi đã biên dịch một hình ảnh ROM của BASIC nâng cao cho 6502. Nó là 16 KB, vì vậy bạn nên tải nó vào $ C000 của không gian bộ nhớ mô phỏng, đặt lại 6502 ảo của bạn và bắt đầu thực hiện.

Tải xuống ZIP này, chứa ehbasic.bin: http://rubbermallet.org/ehbasic.zip

Cách mà EhBASIC xử lý đầu vào / đầu ra rất đơn giản. Khi nó muốn viết một ký tự vào bàn điều khiển, nó ghi byte vào vị trí bộ nhớ $ F001. Vì vậy, khi trình giả lập của bạn nhìn thấy 6502 hãy cố gắng ghi vào vị trí đó, chỉ cần in giá trị ký tự đó lên bàn điều khiển bằng printf ("% c", value); hoặc tuy nhiên khác bạn muốn. (Tất nhiên, thử thách này không giới hạn ở C)

Khi nó thăm dò ý kiến ​​cho một nhân vật được nhập từ bảng điều khiển, nó khá giống nhau. Nó tiếp tục đọc từ vị trí bộ nhớ $ F004, trong đó bạn sẽ có giá trị ký tự ASCII tiếp theo từ bàn phím đang chờ để đọc. Nếu không có thêm đầu vào để đọc, nó sẽ trả về giá trị bằng không.

EhBASIC thăm dò giá trị tại vị trí đó cho đến khi nó khác không, cho phép nó biết byte là đầu vào bàn phím hợp lệ. Đó là lý do tại sao nếu không có thêm đầu vào để đọc, trình giả lập sẽ trả về 0 ở đó. EhBASIC sẽ quay trên nó cho đến khóa hợp lệ tiếp theo khi nó tìm kiếm đầu vào.

Nếu bạn không xóa giá trị đó về 0 sau khi nó đọc giá trị khóa cuối cùng, nó sẽ khiến nó lặp lại như thể bạn đang giữ phím, vì vậy hãy cẩn thận để làm điều đó một cách chính xác!

Nếu trình giả lập của bạn hoạt động chính xác, đây là những gì bạn sẽ thấy được in ra trên bảng điều khiển của mình khi nó thực thi hình ảnh ROM:

6502 EhBASIC [C]old/[W]arm ?

Nhấn C, sau đó nhấn enter và bạn sẽ thấy:

Memory size ?

31999 Bytes free

Enhanced BASIC 2.22

Ready

Các byte miễn phí có thể khác với bạn, nhưng trong trình giả lập của tôi, tôi đã giới hạn vùng bộ nhớ có thể ghi ở mức giới hạn 32 KB. Bạn thực sự có thể đi đến nơi ROM bắt đầu, đó là mốc 48 KB.

Liên kết tài nguyên CPU 6502

Dưới đây là một số tài nguyên sẽ cung cấp cho bạn đủ thông tin để làm việc với:

http://www.obelisk.demon.co.uk/6502/inemony.html

http://www.e-tradition.net/bytes/6502/6502_in cản_set.html

http://www.llx.com/~nparker/a2/opcodes.html <- cái này có một số thông tin rất thú vị

http://en.wikipedia.org/wiki/MOS_T Technology_6502

Nếu bạn có thắc mắc hoặc cần thêm thông tin kỹ thuật, hãy hỏi tôi. Ngoài ra còn có rất nhiều thông tin 6502 khác trên web. Google là bạn của bạn!


Có vẻ là một sự khác biệt trong câu này: "Nếu không có thêm đầu vào để đọc, nó sẽ trả về giá trị bằng 0. Điều này khiến EhBASIC tiếp tục bỏ phiếu cho đến khi nó không khác."
Igby Largeeman

Er, sai lầm của tôi. Tôi đã không giải thích nó tốt. Tôi muốn giải thích rằng EhBASIC thăm dò giá trị tại vị trí đó cho đến khi nó khác không, cho phép nó biết byte là đầu vào bàn phím hợp lệ. Đó là lý do tại sao nếu không có thêm đầu vào để đọc, trình giả lập sẽ trả về 0 ở đó. Tôi sẽ chỉnh sửa nó.
Mike C

Cuối cùng tôi có thể đăng lõi 6502 của mình, nhưng trước tiên tôi sẽ đợi một vài mục từ người khác. Hy vọng ai đó đưa ra thử thách này. Có khá nhiều giải pháp cho thử thách 8086, vì vậy rõ ràng có những người đủ thông minh ở đây để làm điều này. 8086 khó hơn nhiều!
Mike C

1
Tôi rất thích thử điều này, mặc dù không có ý nghĩa cạnh tranh. Vấn đề đối với tôi là tìm thời gian. Tôi nghĩ sẽ tốt nếu bạn có thể cung cấp một chương trình thử nghiệm khác sẽ thực hiện trình giả lập kỹ lưỡng và tạo ra một số đầu ra có thể kiểm chứng dễ dàng, tương tự như những gì đã được thực hiện cho thử thách 8086.
Igby Largeeman

2
Làm thế nào để bạn xác định ai thắng? (phải có người chiến thắng)

Câu trả lời:


22

Nghĩ rằng tôi sẽ đi trước và đăng thực hiện của riêng tôi. Đó là HOÀN TOÀN vô căn cứ, nhưng đó là một thực hiện đầy đủ.

  • 668 dòng của C. (không tính các dòng trống hoặc dòng chỉ có ý kiến)
  • Hỗ trợ (tôi nghĩ) tất cả các hướng dẫn không có giấy tờ.
  • Hỗ trợ BCD.
  • Đồng hồ CPU chu kỳ thời gian. (bao gồm các điều chỉnh trên các kết thúc giới hạn trang nhất định)
  • Có thể thực hiện các hướng dẫn bằng một bước hoặc bằng cách chỉ định số lượng bọ ve.
  • Hỗ trợ hook một chức năng bên ngoài được gọi sau khi mọi lệnh được thực hiện. Điều này là do ban đầu nó là cho một trình giả lập NES và tôi đã sử dụng nó cho thời gian âm thanh.
/ * Lõi giả lập CPU Fake6502 v1.1 ****** / TÌM HIỂU
 * (c) 2011-2013 Mike Chambers *
 ****** / TÌM KIẾM *** /

#inc loại <stdio.h>
#inc loại <stdint.h>

// các hàm được cung cấp bên ngoài
extern uint8_t read6502 (địa chỉ uint16_t);
extern void write6502 (địa chỉ uint16_t, giá trị uint8_t);

// 6502 định nghĩa
#define UNDOCUMENTED // khi điều này được xác định, các opcodes không có giấy tờ được xử lý.
                     // nếu không, chúng chỉ đơn giản được coi là NOP.

// # xác định NES_CPU // khi điều này được xác định, số thập phân được mã hóa nhị phân (BCD)
                     // cờ trạng thái không được vinh danh bởi ADC và SBC. 2A03
                     // CPU trong Hệ thống giải trí Nintendo không
                     // hỗ trợ hoạt động BCD.

#define FLAG_CARRY 0x01
#define FLAG_ZERO 0x02
#define FLAG_INTERRUPT 0x04
#define FLAG_DECIMAL 0x08
#define FLAG_BREAK 0x10
#define FLAG_CONSTANT 0x20
#define FLAG_OVERFLOW 0x40
#define FLAG_SIGN 0x80

#define BASE_STACK 0x100

#define saveaccum (n) a = (uint8_t) ((n) & 0x00FF)


// macro sửa đổi cờ
#define setcarry () trạng thái | = FLAG_CARRY
#define trạng thái Clearcarry () & = (~ FLAG_CARRY)
#define setzero () trạng thái | = FLAG_ZERO
#define Clearzero () trạng thái & = (~ FLAG_ZERO)
#define setinterrupt () status | = FLAG_INTERRUPT
#define trạng thái Clearinterrupt () & = (~ FLAG_INTERRUPT)
#define setdecimal () status | = FLAG_DECIMAL
#define trạng thái Cleardecimal () & = (~ FLAG_DECIMAL)
#define setoverflow () status | = FLAG_OVERFLOW
#define trạng thái clearoverflow () & = (~ FLAG_OVERFLOW)
#define setsign () trạng thái | = FLAG_SIGN
#define xóa trạng thái () & = (~ FLAG_SIGN)


// macro tính toán cờ
#define zerocalc (n) {\
    if ((n) & 0x00FF) Clearzero (); \
        khác setzero (); \
}

#define đăng nhập (n) {\
    if ((n) & 0x0080) setign (); \
        other Clearsign (); \
}

#define carrycalc (n) {\
    if ((n) & 0xFF00) setcarry (); \
        khác Clearcarry (); \
}

#define overflowcalc (n, m, o) {/ * n = result, m = ắc quy, o = bộ nhớ * / \
    if (((n) ^ (uint16_t) (m)) & ((n) ^ (o)) & 0x0080) setoverflow (); \
        khác clearoverflow (); \
}


// 6502 thanh ghi CPU
máy tính uint16_t;
uint8_t sp, a, x, y, status = FLAG_CONSTANT;


// biến trợ giúp
hướng dẫn uint64_t = 0; // theo dõi tổng số lệnh được thực hiện
uint32_t clockticks6502 = 0, clockgoal6502 = 0;
uint16_t oldpc, ea, reladdr, giá trị, kết quả;
opint uint8_t, oldstatus;

// một vài hàm chung được sử dụng bởi các hàm khác
void đẩy16 (uint16_t đẩy) {
    write6502 (BASE_STACK + sp, (giá trị >> 8) & 0xFF);
    write6502 (BASE_STACK + ((sp - 1) & 0xFF), giá trị đẩy & 0xFF);
    sp - = 2;
}

void đẩy8 (uint8_t đẩy) {
    write6502 (BASE_STACK + sp--, đẩy);
}

uint16_t pull16 () {
    uint16_t temp16;
    temp16 = read6502 (BASE_STACK + ((sp + 1) & 0xFF)) | ((uint16_t) đọc6502 (BASE_STACK + ((sp + 2) & 0xFF)) << 8);
    sp + = 2;
    trở về (temp16);
}

uint8_t pull8 () {
    trả về (read6502 (BASE_STACK + ++ sp));
}

void reset6502 () {
    pc = (uint16_t) đọc6502 (0xFFFC) | ((uint16_t) đọc6502 (0xFFFD) << 8);
    a = 0;
    x = 0;
    y = 0;
    sp = 0xFD;
    trạng thái | = FLAG_CONSTANT;
}


khoảng trống tĩnh (* addrtable [256]) ();
khoảng trống tĩnh (* có thể chọn [256]) ();
uint8_t hình phạt, hình phạt;

// chức năng chế độ địa chỉ, tính toán địa chỉ hiệu quả
static void imp () {// ngụ ý
}

static void acc () {// ắc quy
}

static void imm () {// ngay lập tức
    e = pc ++;
}

void void zp () {// zero-page
    e = (uint16_t) đọc6502 ((uint16_t) pc ++);
}

void void zpx () {// zero-page, X
    e = ((uint16_t) read6502 ((uint16_t) pc ++) + (uint16_t) x) & 0xFF; // không có trang
}

static void zpy () {// zero-page, Y
    e = ((uint16_t) read6502 ((uint16_t) pc ++) + (uint16_t) y) & 0xFF; // không có trang
}

static void rel () {// tương đối cho ops nhánh (giá trị tức thời 8 bit, mở rộng đăng nhập)
    reladdr = (uint16_t) read6502 (pc ++);
    if (reladdr & 0x80) reladdr | = 0xFF00;
}

void void abso () {// tuyệt đối
    e = (uint16_t) đọc6502 (pc) | ((uint16_t) đọc6502 (pc + 1) << 8);
    pc + = 2;
}

void void absx () {// tuyệt đối, X
    trang bắt đầu uint16_t;
    e = ((uint16_t) read6502 (pc) | ((uint16_t) read6502 (pc + 1) << 8));
    startpage = e & 0xFF00;
    e + = (uint16_t) x;

    if (startpage! = (ea & 0xFF00)) {// một chu kỳ penlty để vượt trang trên một số opcodes
        hình phạt = 1;
    }

    pc + = 2;
}

static void absy () {// tuyệt đối, Y
    trang bắt đầu uint16_t;
    e = ((uint16_t) read6502 (pc) | ((uint16_t) read6502 (pc + 1) << 8));
    startpage = e & 0xFF00;
    e + = (uint16_t) y;

    if (startpage! = (ea & 0xFF00)) {// một chu kỳ penlty để vượt trang trên một số opcodes
        hình phạt = 1;
    }

    pc + = 2;
}

static void ind () {// gián tiếp
    uint16_t eahelp, eahelp2;
    eahelp = (uint16_t) read6502 (pc) | (uint16_t) ((uint16_t) đọc6502 (pc + 1) << 8);
    eahelp2 = (eahelp & 0xFF00) | ((trợ giúp + 1) & 0x00FF); // sao chép 6502 lỗi bao quanh ranh giới trang
    e = (uint16_t) read6502 (eahelp) | ((uint16_t) đọc6502 (eahelp2) << 8);
    pc + = 2;
}

static void indx () {// (gián tiếp, X)
    uint16_t eahelp;
    eahelp = (uint16_t) (((uint16_t) đọc6502 (pc ++) + (uint16_t) x) & 0xFF); // bao quanh trang zero cho con trỏ bảng
    e = (uint16_t) đọc6502 (eahelp & 0x00FF) | ((uint16_t) đọc6502 ((eahelp + 1) & 0x00FF) << 8);
}

static void indy () {// (gián tiếp), Y
    uint16_t eahelp, eahelp2, startpage;
    eahelp = (uint16_t) đọc6502 (pc ++);
    eahelp2 = (eahelp & 0xFF00) | ((trợ giúp + 1) & 0x00FF); // không có trang
    e = (uint16_t) read6502 (eahelp) | ((uint16_t) đọc6502 (eahelp2) << 8);
    startpage = e & 0xFF00;
    e + = (uint16_t) y;

    if (startpage! = (ea & 0xFF00)) {// một chu kỳ penlty để vượt trang trên một số opcodes
        hình phạt = 1;
    }
}

tĩnh uint16_t getvalue () {
    if (addrtable [opcode] == acc) return ((uint16_t) a);
        trả về khác ((uint16_t) read6502 (e));
}

void void putvalue (uint16_t saveval) {
    if (addrtable [opcode] == acc) a = (uint8_t) (saveval & 0x00FF);
        khác write6502 (ee, (saveval & 0x00FF));
}


// hàm xử lý lệnh
khoảng trống tĩnh adc () {
    hình phạt = 1;
    giá trị = getvalue ();
    result = (uint16_t) a + value + (uint16_t) (trạng thái & FLAG_CARRY);

    carrycalc (kết quả);
    zerocalc (kết quả);
    tràn (kết quả, a, giá trị);
    dấu hiệu (kết quả);

    #ifndef NES_CPU
    if (trạng thái & FLAG_DECIMAL) {
        Clearcarry ();

        if ((a & 0x0F)> 0x09) {
            a + = 0x06;
        }
        if ((a & 0xF0)> 0x90) {
            a + = 0x60;
            setcarry ();
        }

        clockticks6502 ++;
    }
    #endif

    saveaccum (kết quả);
}

khoảng trống tĩnh và () {
    hình phạt = 1;
    giá trị = getvalue ();
    kết quả = (uint16_t) a & value;

    zerocalc (kết quả);
    dấu hiệu (kết quả);

    saveaccum (kết quả);
}

void void asl () {
    giá trị = getvalue ();
    kết quả = giá trị << 1;

    carrycalc (kết quả);
    zerocalc (kết quả);
    dấu hiệu (kết quả);

    putvalue (kết quả);
}

khoảng trống tĩnh bcc () {
    if ((trạng thái & FLAG_CARRY) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // kiểm tra xem bước nhảy có vượt qua ranh giới trang không
            khác clockticks6502 ++;
    }
}

void void bcs () {
    if ((trạng thái & FLAG_CARRY) == FLAG_CARRY) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // kiểm tra xem bước nhảy có vượt qua ranh giới trang không
            khác clockticks6502 ++;
    }
}

void void beq () {
    if ((trạng thái & FLAG_ZERO) == FLAG_ZERO) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // kiểm tra xem bước nhảy có vượt qua ranh giới trang không
            khác clockticks6502 ++;
    }
}

bit void void () {
    giá trị = getvalue ();
    kết quả = (uint16_t) a & value;

    zerocalc (kết quả);
    trạng thái = (trạng thái & 0x3F) | (uint8_t) (giá trị & 0xC0);
}

void void bmi () {
    if ((trạng thái & FLAG_SIGN) == FLAG_SIGN) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // kiểm tra xem bước nhảy có vượt qua ranh giới trang không
            khác clockticks6502 ++;
    }
}

void void bne () {
    if ((trạng thái & FLAG_ZERO) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // kiểm tra xem bước nhảy có vượt qua ranh giới trang không
            khác clockticks6502 ++;
    }
}

void void bpl () {
    if ((trạng thái & FLAG_SIGN) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // kiểm tra xem bước nhảy có vượt qua ranh giới trang không
            khác clockticks6502 ++;
    }
}

void void brk () {
    pc ++;
    đẩy 16 (pc); // đẩy địa chỉ lệnh tiếp theo lên ngăn xếp
    đẩy8 (trạng thái | FLAG_BREAK); // đẩy trạng thái CPU lên ngăn xếp
    setinterrupt (); // đặt cờ ngắt
    pc = (uint16_t) đọc6502 (0xFFFE) | ((uint16_t) đọc6502 (0xFFFF) << 8);
}

void void bvc () {
    if ((trạng thái & FLAG_OVERFLOW) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // kiểm tra xem bước nhảy có vượt qua ranh giới trang không
            khác clockticks6502 ++;
    }
}

void bvs () {
    if ((trạng thái & FLAG_OVERFLOW) == FLAG_OVERFLOW) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // kiểm tra xem bước nhảy có vượt qua ranh giới trang không
            khác clockticks6502 ++;
    }
}

void void clc () {
    Clearcarry ();
}

void void cld () {
    rõ ràng ();
}

void void cli () {
    rõ ràng ngắt ();
}

void void clv () {
    dòng phân tách ();
}

khoảng trống tĩnh cmp () {
    hình phạt = 1;
    giá trị = getvalue ();
    kết quả = (uint16_t) a - giá trị;

    if (a> = (uint8_t) (giá trị & 0x00FF)) setcarry ();
        khác Clearcarry ();
    if (a == (uint8_t) (giá trị & 0x00FF)) setzero ();
        khác Clearzero ();
    dấu hiệu (kết quả);
}

void void cpx () {
    giá trị = getvalue ();
    kết quả = (uint16_t) x - giá trị;

    if (x> = (uint8_t) (giá trị & 0x00FF)) setcarry ();
        khác Clearcarry ();
    if (x == (uint8_t) (giá trị & 0x00FF)) setzero ();
        khác Clearzero ();
    dấu hiệu (kết quả);
}

void void cpy () {
    giá trị = getvalue ();
    kết quả = (uint16_t) y - giá trị;

    if (y> = (uint8_t) (giá trị & 0x00FF)) setcarry ();
        khác Clearcarry ();
    if (y == (uint8_t) (giá trị & 0x00FF)) setzero ();
        khác Clearzero ();
    dấu hiệu (kết quả);
}

void void dec () {
    giá trị = getvalue ();
    kết quả = giá trị - 1;

    zerocalc (kết quả);
    dấu hiệu (kết quả);

    putvalue (kết quả);
}

void void dex () {
    x--;

    zerocalc (x);
    ký hiệu (x);
}

void void dey () {
    y--;

    zerocalc (y);
    dấu hiệu (y);
}

void void eor () {
    hình phạt = 1;
    giá trị = getvalue ();
    kết quả = (uint16_t) a ^ giá trị;

    zerocalc (kết quả);
    dấu hiệu (kết quả);

    saveaccum (kết quả);
}

void void inc () {
    giá trị = getvalue ();
    kết quả = giá trị + 1;

    zerocalc (kết quả);
    dấu hiệu (kết quả);

    putvalue (kết quả);
}

void void inx () {
    x ++;

    zerocalc (x);
    ký hiệu (x);
}

void void iny () {
    y ++;

    zerocalc (y);
    dấu hiệu (y);
}

void void jmp () {
    pc = e;
}

khoảng trống tĩnh jsr () {
    đẩy 16 (pc - 1);
    pc = e;
}

khoảng trống tĩnh lda () {
    hình phạt = 1;
    giá trị = getvalue ();
    a = (uint8_t) (giá trị & 0x00FF);

    zerocalc (a);
    ký hiệu (a);
}

khoảng trống tĩnh ldx () {
    hình phạt = 1;
    giá trị = getvalue ();
    x = (uint8_t) (giá trị & 0x00FF);

    zerocalc (x);
    ký hiệu (x);
}

void void ldy () {
    hình phạt = 1;
    giá trị = getvalue ();
    y = (uint8_t) (giá trị & 0x00FF);

    zerocalc (y);
    dấu hiệu (y);
}

khoảng trống tĩnh lsr () {
    giá trị = getvalue ();
    kết quả = giá trị >> 1;

    if (value & 1) setcarry ();
        khác Clearcarry ();
    zerocalc (kết quả);
    dấu hiệu (kết quả);

    putvalue (kết quả);
}

void void nop () {
    chuyển đổi (opcode) {
        trường hợp 0x1C:
        trường hợp 0x3C:
        trường hợp 0x5C:
        trường hợp 0x7C:
        trường hợp 0xDC:
        trường hợp 0xFC:
            hình phạt = 1;
            phá vỡ;
    }
}

khoảng trống tĩnh ora () {
    hình phạt = 1;
    giá trị = getvalue ();
    kết quả = (uint16_t) a | giá trị;

    zerocalc (kết quả);
    dấu hiệu (kết quả);

    saveaccum (kết quả);
}

tĩnh void pha () {
    đẩy8 (a);
}

void void php () {
    đẩy8 (trạng thái | FLAG_BREAK);
}

void void pla () {
    a = pull8 ();

    zerocalc (a);
    ký hiệu (a);
}

void void plp () {
    trạng thái = pull8 () | FLAG_CONSTANT;
}

void void rol () {
    giá trị = getvalue ();
    kết quả = (giá trị << 1) | (trạng thái & FLAG_CARRY);

    carrycalc (kết quả);
    zerocalc (kết quả);
    dấu hiệu (kết quả);

    putvalue (kết quả);
}

static void ror () {
    giá trị = getvalue ();
    kết quả = (giá trị >> 1) | ((trạng thái & FLAG_CARRY) << 7);

    if (value & 1) setcarry ();
        khác Clearcarry ();
    zerocalc (kết quả);
    dấu hiệu (kết quả);

    putvalue (kết quả);
}

void void rti () {
    trạng thái = pull8 ();
    giá trị = pull16 ();
    pc = giá trị;
}

void void rts () {
    giá trị = pull16 ();
    pc = giá trị + 1;
}

void void sbc () {
    hình phạt = 1;
    giá trị = getvalue () ^ 0x00FF;
    result = (uint16_t) a + value + (uint16_t) (trạng thái & FLAG_CARRY);

    carrycalc (kết quả);
    zerocalc (kết quả);
    tràn (kết quả, a, giá trị);
    dấu hiệu (kết quả);

    #ifndef NES_CPU
    if (trạng thái & FLAG_DECIMAL) {
        Clearcarry ();

        a - = 0x66;
        if ((a & 0x0F)> 0x09) {
            a + = 0x06;
        }
        if ((a & 0xF0)> 0x90) {
            a + = 0x60;
            setcarry ();
        }

        clockticks6502 ++;
    }
    #endif

    saveaccum (kết quả);
}

void void sec () {
    setcarry ();
}

void void sed () {
    setdecimal ();
}

void void sei () {
    setinterrupt ();
}

void void sta () {
    giá trị (a);
}

void void stx () {
    giá trị (x);
}

static void sty () {
    putvalue (y);
}

thuế void void () {
    x = a;

    zerocalc (x);
    ký hiệu (x);
}

static void tay () {
    y = a;

    zerocalc (y);
    dấu hiệu (y);
}

void void tsx () {
    x = sp;

    zerocalc (x);
    ký hiệu (x);
}

khoảng trống tĩnh txa () {
    a = x;

    zerocalc (a);
    ký hiệu (a);
}

void void txs () {
    sp = x;
}

void void tya () {
    a = y;

    zerocalc (a);
    ký hiệu (a);
}

// hướng dẫn không có giấy tờ
#ifdef HIỂU
    void void lax () {
        lda ();
        ldx ();
    }

    tĩnh void sax () {
        sta ();
        stx ();
        giá trị (a & x);
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void dcp() {
        dec();
        cmp();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void isb() {
        inc();
        sbc();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void slo() {
        asl();
        ora();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void rla() {
        rol();
        and();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void sre() {
        lsr();
        eor();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void rra() {
        ror();
        adc();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }
#else
    #define lax nop
    #define sax nop
    #define dcp nop
    #define isb nop
    #define slo nop
    #define rla nop
    #define sre nop
    #define rra nop
#endif


static void (*addrtable[256])() = {
/*        |  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  A  |  B  |  C  |  D  |  E  |  F  |     */
/* 0 */     imp, indx,  imp, indx,   zp,   zp,   zp,   zp,  imp,  imm,  acc,  imm, abso, abso, abso, abso, /* 0 */
/* 1 */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx, /* 1 */
/* 2 */    abso, indx,  imp, indx,   zp,   zp,   zp,   zp,  imp,  imm,  acc,  imm, abso, abso, abso, abso, /* 2 */
/* 3 */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx, /* 3 */
/* 4 */     imp, indx,  imp, indx,   zp,   zp,   zp,   zp,  imp,  imm,  acc,  imm, abso, abso, abso, abso, /* 4 */
/* 5 */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx, /* 5 */
/* 6 */     imp, indx,  imp, indx,   zp,   zp,   zp,   zp,  imp,  imm,  acc,  imm,  ind, abso, abso, abso, /* 6 */
/* 7 */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx, /* 7 */
/* 8 */     imm, indx,  imm, indx,   zp,   zp,   zp,   zp,  imp,  imm,  imp,  imm, abso, abso, abso, abso, /* 8 */
/* 9 */     rel, indy,  imp, indy,  zpx,  zpx,  zpy,  zpy,  imp, absy,  imp, absy, absx, absx, absy, absy, /* 9 */
/* A */     imm, indx,  imm, indx,   zp,   zp,   zp,   zp,  imp,  imm,  imp,  imm, abso, abso, abso, abso, /* A */
/* B */     rel, indy,  imp, indy,  zpx,  zpx,  zpy,  zpy,  imp, absy,  imp, absy, absx, absx, absy, absy, /* B */
/* C */     imm, indx,  imm, indx,   zp,   zp,   zp,   zp,  imp,  imm,  imp,  imm, abso, abso, abso, abso, /* C */
/* D */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx, /* D */
/* E */     imm, indx,  imm, indx,   zp,   zp,   zp,   zp,  imp,  imm,  imp,  imm, abso, abso, abso, abso, /* E */
/* F */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx  /* F */
};

static void (*optable[256])() = {
/*        |  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  A  |  B  |  C  |  D  |  E  |  F  |      */
/* 0 */      brk,  ora,  nop,  slo,  nop,  ora,  asl,  slo,  php,  ora,  asl,  nop,  nop,  ora,  asl,  slo, /* 0 */
/* 1 */      bpl,  ora,  nop,  slo,  nop,  ora,  asl,  slo,  clc,  ora,  nop,  slo,  nop,  ora,  asl,  slo, /* 1 */
/* 2 */      jsr,  and,  nop,  rla,  bit,  and,  rol,  rla,  plp,  and,  rol,  nop,  bit,  and,  rol,  rla, /* 2 */
/* 3 */      bmi,  and,  nop,  rla,  nop,  and,  rol,  rla,  sec,  and,  nop,  rla,  nop,  and,  rol,  rla, /* 3 */
/* 4 */      rti,  eor,  nop,  sre,  nop,  eor,  lsr,  sre,  pha,  eor,  lsr,  nop,  jmp,  eor,  lsr,  sre, /* 4 */
/* 5 */      bvc,  eor,  nop,  sre,  nop,  eor,  lsr,  sre,  cli,  eor,  nop,  sre,  nop,  eor,  lsr,  sre, /* 5 */
/* 6 */      rts,  adc,  nop,  rra,  nop,  adc,  ror,  rra,  pla,  adc,  ror,  nop,  jmp,  adc,  ror,  rra, /* 6 */
/* 7 */      bvs,  adc,  nop,  rra,  nop,  adc,  ror,  rra,  sei,  adc,  nop,  rra,  nop,  adc,  ror,  rra, /* 7 */
/* 8 */      nop,  sta,  nop,  sax,  sty,  sta,  stx,  sax,  dey,  nop,  txa,  nop,  sty,  sta,  stx,  sax, /* 8 */
/* 9 */      bcc,  sta,  nop,  nop,  sty,  sta,  stx,  sax,  tya,  sta,  txs,  nop,  nop,  sta,  nop,  nop, /* 9 */
/* A */      ldy,  lda,  ldx,  lax,  ldy,  lda,  ldx,  lax,  tay,  lda,  tax,  nop,  ldy,  lda,  ldx,  lax, /* A */
/* B */      bcs,  lda,  nop,  lax,  ldy,  lda,  ldx,  lax,  clv,  lda,  tsx,  lax,  ldy,  lda,  ldx,  lax, /* B */
/* C */      cpy,  cmp,  nop,  dcp,  cpy,  cmp,  dec,  dcp,  iny,  cmp,  dex,  nop,  cpy,  cmp,  dec,  dcp, /* C */
/* D */      bne,  cmp,  nop,  dcp,  nop,  cmp,  dec,  dcp,  cld,  cmp,  nop,  dcp,  nop,  cmp,  dec,  dcp, /* D */
/* E */      cpx,  sbc,  nop,  isb,  cpx,  sbc,  inc,  isb,  inx,  sbc,  nop,  sbc,  cpx,  sbc,  inc,  isb, /* E */
/* F */      beq,  sbc,  nop,  isb,  nop,  sbc,  inc,  isb,  sed,  sbc,  nop,  isb,  nop,  sbc,  inc,  isb  /* F */
};

static const uint32_t ticktable[256] = {
/*        |  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  A  |  B  |  C  |  D  |  E  |  F  |     */
/* 0 */      7,    6,    2,    8,    3,    3,    5,    5,    3,    2,    2,    2,    4,    4,    6,    6,  /* 0 */
/* 1 */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7,  /* 1 */
/* 2 */      6,    6,    2,    8,    3,    3,    5,    5,    4,    2,    2,    2,    4,    4,    6,    6,  /* 2 */
/* 3 */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7,  /* 3 */
/* 4 */      6,    6,    2,    8,    3,    3,    5,    5,    3,    2,    2,    2,    3,    4,    6,    6,  /* 4 */
/* 5 */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7,  /* 5 */
/* 6 */      6,    6,    2,    8,    3,    3,    5,    5,    4,    2,    2,    2,    5,    4,    6,    6,  /* 6 */
/* 7 */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7,  /* 7 */
/* 8 */      2,    6,    2,    6,    3,    3,    3,    3,    2,    2,    2,    2,    4,    4,    4,    4,  /* 8 */
/* 9 */      2,    6,    2,    6,    4,    4,    4,    4,    2,    5,    2,    5,    5,    5,    5,    5,  /* 9 */
/* A */      2,    6,    2,    6,    3,    3,    3,    3,    2,    2,    2,    2,    4,    4,    4,    4,  /* A */
/* B */      2,    5,    2,    5,    4,    4,    4,    4,    2,    4,    2,    4,    4,    4,    4,    4,  /* B */
/* C */      2,    6,    2,    8,    3,    3,    5,    5,    2,    2,    2,    2,    4,    4,    6,    6,  /* C */
/* D */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7,  /* D */
/* E */      2,    6,    2,    8,    3,    3,    5,    5,    2,    2,    2,    2,    4,    4,    6,    6,  /* E */
/* F */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7   /* F */
};


void nmi6502() {
    push16(pc);
    push8(status);
    status |= FLAG_INTERRUPT;
    pc = (uint16_t)read6502(0xFFFA) | ((uint16_t)read6502(0xFFFB) << 8);
}

void irq6502() {
    push16(pc);
    push8(status);
    status |= FLAG_INTERRUPT;
    pc = (uint16_t)read6502(0xFFFE) | ((uint16_t)read6502(0xFFFF) << 8);
}

uint8_t callexternal = 0;
void (*loopexternal)();

void exec6502(uint32_t tickcount) {
    clockgoal6502 += tickcount;

    while (clockticks6502 < clockgoal6502) {
        opcode = read6502(pc++);

        penaltyop = 0;
        penaltyaddr = 0;

        (*addrtable[opcode])();
        (*optable[opcode])();
        clockticks6502 += ticktable[opcode];
        if (penaltyop && penaltyaddr) clockticks6502++;

        instructions++;

        if (callexternal) (*loopexternal)();
    }

}

void step6502() {
    opcode = read6502(pc++);

    penaltyop = 0;
    penaltyaddr = 0;

    (*addrtable[opcode])();
    (*optable[opcode])();
    clockticks6502 += ticktable[opcode];
    if (penaltyop && penaltyaddr) clockticks6502++;
    clockgoal6502 = clockticks6502;

    instructions++;

    if (callexternal) (*loopexternal)();
}

void hookexternal(void *funcptr) {
    if (funcptr != (void *)NULL) {
        loopexternal = funcptr;
        callexternal = 1;
    } else callexternal = 0;
}

FYI, If you use the markdown method of marking code (indent by four spaces), it will be in a screen-sized scrollable region; and you don't need to html-ize <tag brackets>. ... But for this answer, I actually think it's better as it is. As a reference-implementation, it puts the space it takes to very good use. ... If/when more answers arrive, you may want to switch to the 4-space indent so it doesn't dominate the page. $0.02 ... Love the question... +1 +1 +1! I'm working on mine, don't you worry! :)
luser droog

21

A MOS 6502 emulator in Haskell. Features include:

  • bit accurate implementation including subtle P register handling and page wrapping during indexing and indirection
  • memory mapped IO, with spin loop detection (so host CPU doesn't peg while waiting for input)
  • halt detection (jumps/branches to self)
  • CPU implemented in exactly 200 lines & 6502 characters of code
  • CPU implementation is pure state monad

This is a somewhat golf'd version of a full implementation (with more features) I did for this challenge that I'll post later. Despite the golf, the code is still straight forward. Only known missing feature is BCD mode (coming...)

Runs the ehBASIC code:

& ghc -O2 -o z6502min -Wall -fwarn-tabs -fno-warn-missing-signatures Z6502.hs
[1 of 1] Compiling Main             ( Z6502.hs, Z6502.o )

Z6502.hs:173:1: Warning: Defined but not used: `nmi'

Z6502.hs:174:1: Warning: Defined but not used: `irq'
Linking z6502min ...

& ./z6502min ehbasic.bin 
6502 EhBASIC [C]old/[W]arm ?

Memory size ? 

48383 Bytes free

Enhanced BASIC 2.22

Ready
PRINT "Hello World"
Hello World

Ready
10 FOR I = 1 TO 10
20 FOR J = 1 TO I
30 PRINT J;
40 NEXT J
50 PRINT
60 NEXT I
RUN
 1
 1 2
 1 2 3
 1 2 3 4
 1 2 3 4 5
 1 2 3 4 5 6
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8 9
 1 2 3 4 5 6 7 8 9 10

Ready

And the code, at under 300 lines total:

-- Z6502: a 6502 emulator
-- by Mark Lentczner

module Main (main) where

import Control.Applicative
import Control.Monad
import Control.Monad.State.Strict
import Data.Bits
import qualified Data.ByteString as B
import Data.List
import qualified Data.Vector as V
import qualified Data.Vector.Unboxed as VU
import Data.Word
import System.Environment
import System.IO

{- === CPU: 200 lines, 6502 characters === -}
type Addr = Word16
toAd = fromIntegral :: Int -> Addr
addr :: Word8 -> Word8 -> Addr
addr lo hi = fromIntegral hi `shiftL` 8 .|. fromIntegral lo
lohi ad = (fromIntegral ad, fromIntegral $ ad `shiftR` 8)
zeroPage v = addr v 0
index ad idx = ad + fromIntegral (idx :: Word8)
relativeAddr ad off = index ad off - if off > 0x7f then 256 else 0

data Page = Missing | ROM !B.ByteString | RAM !(VU.Vector Word8)
type Memory = V.Vector Page
emptyMemory = V.replicate 256 Missing

fetchByte ad mv = case mv V.! hi of
    ROM bs -> B.index bs lo
    RAM vs -> vs VU.! lo
    _ -> 0
  where (hi,lo) = fromIntegral ad `divMod` 256
storeByte ad v mv = case mv V.! hi of
    RAM vs -> mv V.// [(hi, RAM $ vs VU.// [(lo, v)])]
    _ -> mv
  where (hi,lo) = fromIntegral ad `divMod` 256

data S = S { rA, rX, rY, rP, rS :: !Word8, rPC :: !Addr
           , mem :: !Memory, busR,busW :: Maybe Addr }
powerOnState = S 0 0 0 0 0 0 emptyMemory Nothing Nothing

[bitN, bitV, bitX, bitB, bitD, bitI, bitZ, bitC] = [7,6..0]
toBit b t v = (if t then setBit else clearBit) v b
toZ v = toBit bitZ (v == 0)
toZN v = toBit bitZ (v == 0) . toBit bitN (testBit v 7)
to67 v = toBit bitV (testBit v 6) . toBit bitN (testBit v 7)

setZN v = modify $ \s -> s { rP = toZN v $ rP s }
setAZN v = modify $ \s -> s { rA = v, rP=toZN v $ rP s }
setXZN v = modify $ \s -> s { rX = v, rP=toZN v $ rP s }
setYZN v = modify $ \s -> s { rY = v, rP=toZN v $ rP s }
setZVNbit (a,v) = modify $ \s -> s { rP = toZ (a .&. v) $ to67 v $ rP s }
setACZVN (c,v,a) = modify $ \s ->
    s { rA = a, rP = toBit bitC c $ toBit bitV v $ toZN a $ rP s }
setCZN (c,v) = modify $ \s -> s { rP = toBit bitC c $ toZN v $ rP s }

fetch a = state $ \s -> (fetchByte a $ mem s, s { busR = Just a })
fetchIndirectAddr a0 = do
    m <- gets mem
    let (lo,hi) = lohi a0
        a1 = addr (lo+1) hi
        bLo = fetchByte a0 m
        bHi = fetchByte a1 m
    return $ addr bLo bHi
store a v = modify $ \s -> s { mem = storeByte a v $ mem s, busW = Just a }

clearBus = modify $ \s -> s { busR = Nothing, busW = Nothing }
nextPC = state $ \s -> (rPC s, s { rPC = rPC s + 1 })
fetchPC = nextPC >>= \a -> gets mem >>= return . fetchByte a

adjSP n m = state $ \s -> (addr (rS s + m) 1, s { rS = rS s + n })
push v = adjSP (-1) 0 >>= flip store v
pull = adjSP 1 1 >>= fetch
pushAddr a = let (lo, hi) = lohi a in push hi >> push lo
pullAddr = addr <$> pull <*> pull
pushP fromSW = gets rP >>= push . toBit bitX True . toBit bitB fromSW
pullP = pull >>= \v -> modify $ \s -> s { rP = v .&. 0xCF }

indexX a = gets rX >>= return . index a
indexY a = gets rY >>= return . index a
aImm=nextPC
aZero=zeroPage<$>fetchPC
aZeroX=zeroPage<$>((+)<$>fetchPC<*>gets rX)
aZeroY=zeroPage<$>((+)<$>fetchPC<*>gets rY)
aRel=flip relativeAddr<$>fetchPC<*>gets rPC
aAbs=addr<$>fetchPC<*>fetchPC
aAbsX=aAbs>>=indexX
aAbsY=aAbs>>=indexY
aInd=aAbs>>=fetchIndirectAddr
aIndIdx=aZeroX>>=fetchIndirectAddr
aIdxInd=aZero>>=fetchIndirectAddr>>=indexY

decode = V.fromList $ concat $ transpose
 [[iBRK,iBPL,iJSR&aAbs,iBMI,iRTI,iBVC,iRTS,iBVS
  ,iErr,iBCC,iLDY&aImm,iBCS,iCPY&aImm,iBNE,iCPX&aImm,iBEQ]
 ,cAlu aIndIdx aIdxInd
 ,cErr//(10,iLDX&aImm)
 ,cErr
 ,[iErr,iErr,iBIT&aZero,iErr,iErr,iErr,iErr,iErr
  ,iSTY&aZero,iSTY&aZeroX,iLDY&aZero,iLDY&aZeroX,iCPY&aZero,iErr,iCPX&aZero,iErr]
 ,cAlu aZero aZeroX
 ,cBit aZero aZeroX//(9,iSTX&aZeroY)//(11,iLDX&aZeroY)
 ,cErr
 ,[iPHP,iCLC,iPLP,iSEC,iPHA,iCLI,iPLA,iSEI,iDEY,iTYA,iTAY,iCLV,iINY,iCLD,iINX,iSED]
 ,cAlu aImm aAbsY//(8,iErr)
 ,[iASLa,iErr,iROLa,iErr,iLSRa,iErr,iRORa,iErr
  ,iTXA,iTXS,iTAX,iTSX,iDEX,iErr,iNOP,iErr ]
 ,cErr
 ,[iErr,iErr,iBIT&aAbs,iErr,iJMP&aAbs,iErr,iJMP&aInd,iErr
  ,iSTY&aAbs,iErr,iLDY&aAbs,iLDY&aAbsX,iCPY&aAbs,iErr,iCPX&aAbs,iErr]
 ,cAlu aAbs aAbsX
 ,cBit aAbs aAbsX//(9,iErr)//(11,iLDX&aAbsY)
 ,cErr
 ]
cAlt is e o = is >>= (\i->[i&e,i&o])
cAlu = cAlt [iORA,iAND,iEOR,iADC,iSTA,iLDA,iCMP,iSBC]
cBit = cAlt [iASL,iROL,iLSR,iROR,iSTX,iLDX,iDEC,iINC]
cErr = replicate 16 iErr
is//(n,j) = let (f,_:h) = splitAt n is in f++j:h
i&a=a>>=i

loadIns l a = fetch a >>= l
storeIns f a = f >>= store a

aluIns set op ad = do
    v <- fetch ad
    a <- gets rA
    set $ op a v

modIns op a = fetch a >>= op >>= store a
modAccIns op = gets rA >>= op >>= \v -> modify $ \s -> s { rA = v }

stIns b op = modify $ \s -> s { rP = op (rP s) b }

jump a = modify $ \s -> s { rPC = a }
brIns b t = do
    a <- aRel
    p <- gets rP
    when (testBit p b == t) $ jump a

adcOp a b cIn = (cOut, v, s)
  where
    h = b + (if cIn then 1 else 0)
    s = a + h
    cOut = h < b || s < a
    v = testBit (a `xor` s .&. b `xor` s) 7
sbcOp a b cIn = adcOp a (complement b) cIn
carryOp f = gets rP >>= setACZVN . f . flip testBit bitC

cmpOp a b = (a >= b, a - b)

shiftOp shifter isRot inBit outBit v = do
    s <- get
    let newC = testBit v outBit
        bitIn = toBit inBit $ isRot && testBit (rP s) bitC
        v' = bitIn $ shifter v 1
    put s { rP = toBit bitC newC $ toZN v' $ rP s }
    return v'

vector a = fetchIndirectAddr a >>= jump

interrupt isBrk pcOffset a = do
    gets rPC >>= pushAddr . flip index pcOffset
    pushP isBrk
    iSEI
    vector a

reset = vector $ toAd 0xFFFC
nmi = interrupt False 0 $ toAd 0xFFFA
irq = interrupt False 0 $ toAd 0xFFFE

[iORA,iAND,iEOR]=aluIns setAZN<$>[(.|.),(.&.),xor]
[iADC,iSBC]=aluIns carryOp<$>[adcOp,sbcOp]
iSTA=storeIns$gets rA
iLDA=loadIns setAZN
iCMP=aluIns setCZN cmpOp

[iSTX,iSTY]=storeIns.gets<$>[rX,rY]
[iLDX,iLDY]=loadIns<$>[setXZN,setYZN]
[iCPX,iCPY]=(\r a->gets r>>= \v->fetch a>>=setCZN.cmpOp v)<$>[rX,rY]
[iDEC,iINC]=modIns.(\i v->setZN(v+i)>>return(v+i))<$>[-1,1]
[iDEX,iINX]=(gets rX>>=).(setXZN.).(+)<$>[-1,1]
[iDEY,iINY]=(gets rY>>=).(setYZN.).(+)<$>[-1,1]

shOps=[shiftOp d r b(7-b)|(d,b)<-[(shiftL,0),(shiftR,7)],r<-[False,True]]
[iASL,iROL,iLSR,iROR]=modIns<$>shOps
[iASLa,iROLa,iLSRa,iRORa]=modAccIns<$>shOps

iBIT=aluIns setZVNbit(,)
iJMP=jump

[iBPL,iBMI,iBVC,iBVS,iBCC,iBCS,iBNE,iBEQ]=brIns<$>[bitN,bitV,bitC,bitZ]<*>[False,True]
[iCLC,iSEC,iCLI,iSEI,iCLV,_,iCLD,iSED]=stIns<$>[bitC,bitI,bitV,bitD]<*>[clearBit,setBit]

iBRK=interrupt True 1 $ toAd 0xFFFE
iJSR a=gets rPC>>=pushAddr.(-1+)>>jump a
iRTI=iPLP>>pullAddr>>=jump
iRTS=pullAddr>>=jump.(1+)

iPHP=pushP True
iPLP=pullP
iPHA=gets rA>>=push
iPLA=pull>>=setAZN

iNOP=return ()

[iTAX,iTAY]=(gets rA>>=)<$>[setXZN,setYZN]
[iTXA,iTYA]=(>>=setAZN).gets<$>[rX,rY]
iTXS=modify $ \s -> s { rS=rX s }
iTSX=gets rS>>=setXZN

iErr=gets rPC>>=jump.(-1+)

executeOne = clearBus >> fetchPC >>= (decode V.!) . fromIntegral
{- === END OF CPU === -}


{- === MOTHERBOARD === -}
buildMemory rom =
    loadRAM 0xF0 1 $ loadRAM 0x00 ramSize $ loadROM romStart rom $ emptyMemory
  where
    ramSize = 256 - (B.length rom `div` 256)
    romStart = fromIntegral ramSize

    loadRAM p0 n = (V.// zip [p0..] (map RAM $ replicate n ramPage))
    ramPage = VU.replicate 256 0

    loadROM p0 bs = (V.// zip [p0..] (map ROM $ romPages bs))
    romPages b = case B.length b of
        l | l == 0    -> []
          | l < 256   -> [b `B.append` B.replicate (256 - l) 0]
          | l == 256  -> [b]
          | otherwise -> let (b0,bn) = B.splitAt 256 b in b0 : romPages bn

main = getArgs >>= go
  where
    go [romFile] = B.readFile romFile >>= exec . buildState . buildMemory
    go _ = putStrLn "agument should be a single ROM file"

    buildState m = execState reset (powerOnState { mem = m })

    exec s0 = do
        stopIO <- startIO
        loop (0 :: Int) s0
        stopIO

    loop n s = do
        let pcsp = (rPC s, rS s)
        (n',s') <- processIO n (execState executeOne s)
        let pcsp' = (rPC s', rS s')
        if pcsp /= pcsp'
            then (loop $! n') $! s'
            else do
                putStrLn $ "Execution snagged at " ++ show (fst pcsp')

    startIO = do
        ibuf <- hGetBuffering stdin
        obuf <- hGetBuffering stdout
        iecho <- hGetEcho stdin
        hSetBuffering stdin NoBuffering
        hSetBuffering stdout NoBuffering
        hSetEcho stdin False
        return $ do
            hSetEcho stdin iecho
            hSetBuffering stdin ibuf
            hSetBuffering stdout obuf
            putStr "\n\n"

    processIO n s = do
        when (busW s == Just outPortAddr) $ do
            let c = fetchByte outPortAddr $ mem s
            when (c /= 0) $ hPutChar stdout $ toEnum $ fromIntegral c
        if (busR s == Just inPortAddr)
            then do
                r <- if n < 16
                        then hWaitForInput stdin 50
                        else hReady stdin
                c <- if r then (fromIntegral . fromEnum) <$> hGetChar stdin else return 0
                let c' = if c == 0xA then 0xD else c
                let s' = s { mem = storeByte inPortAddr c' $ mem s }
                return (0,s')
            else return (n+1,s)

    inPortAddr = toAd 0xF004
    outPortAddr = toAd 0xF001

5
Good work! Very small. I don't know Haskell, maybe I should learn. I love that fact that it's 6502 characters. :)
Mike C

6

For anyone interested I thought I would share my implementation of the 6502 in C#. As with other posts here it is completely ungolfed but is a feature complete implementation.

  • Supports NMOS and CMOS
  • Includes several test programs including the AllSuite test above as Unit Tests.
  • Supports BCD

I started this project by creating a spreadsheet of instructions when I was first learning about the CPU. I realized I could use this spreadsheet to save myself some typing. I turned this into a text file table that the emulator loads to help count cycles and for easy disassembly output.

Entire project is available on Github https://github.com/amensch/e6502

/*
 * e6502: A complete 6502 CPU emulator.
 * Copyright 2016 Adam Mensch
 */

using System;

namespace e6502CPU
{
    public enum e6502Type
    {
        CMOS,
        NMOS
    };

    public class e6502
    {
        // Main Register
        public byte A;

        // Index Registers
        public byte X;
        public byte Y;

        // Program Counter
        public ushort PC;

        // Stack Pointer
        // Memory location is hard coded to 0x01xx
        // Stack is descending (decrement on push, increment on pop)
        // 6502 is an empty stack so SP points to where next value is stored
        public byte SP;

        // Status Registers (in order bit 7 to 0)
        public bool NF;    // negative flag (N)
        public bool VF;    // overflow flag (V)
                           // bit 5 is unused
                           // bit 4 is the break flag however it is not a physical flag in the CPU
        public bool DF;    // binary coded decimal flag (D)
        public bool IF;    // interrupt flag (I)
        public bool ZF;    // zero flag (Z)
        public bool CF;    // carry flag (C)

        // RAM - 16 bit address bus means 64KB of addressable memory
        public byte[] memory;

        // List of op codes and their attributes
        private OpCodeTable _opCodeTable;

        // The current opcode
        private OpCodeRecord _currentOP;

        // Clock cycles to adjust due to page boundaries being crossed, branches taken, or NMOS/CMOS differences
        private int _extraCycles;

        // Flag for hardware interrupt (IRQ)
        public bool IRQWaiting { get; set; }

        // Flag for non maskable interrupt (NMI)
        public bool NMIWaiting { get; set; }

        public e6502Type _cpuType { get; set; }

        public e6502(e6502Type type)
        {
            memory = new byte[0x10000];
            _opCodeTable = new OpCodeTable();

            // Set these on instantiation so they are known values when using this object in testing.
            // Real programs should explicitly load these values before using them.
            A = 0;
            X = 0;
            Y = 0;
            SP = 0;
            PC = 0;
            NF = false;
            VF = false;
            DF = false;
            IF = true;
            ZF = false;
            CF = false;
            NMIWaiting = false;
            IRQWaiting = false;
            _cpuType = type;
        }

        public void Boot()
        {
            // On reset the addresses 0xfffc and 0xfffd are read and PC is loaded with this value.
            // It is expected that the initial program loaded will have these values set to something.
            // Most 6502 systems contain ROM in the upper region (around 0xe000-0xffff)
            PC = GetWordFromMemory(0xfffc);

            // interrupt disabled is set on powerup
            IF = true;

            NMIWaiting = false;
            IRQWaiting = false;
        }

        public void LoadProgram(ushort startingAddress, byte[] program)
        {
            program.CopyTo(memory, startingAddress);
            PC = startingAddress;
        }

        public string DasmNextInstruction()
        {
            OpCodeRecord oprec = _opCodeTable.OpCodes[ memory[PC] ];
            if (oprec.Bytes == 3)
                return oprec.Dasm( GetImmWord() );
            else
                return oprec.Dasm( GetImmByte() );
        }

        // returns # of clock cycles needed to execute the instruction
        public int ExecuteNext()
        {
            _extraCycles = 0;

            // Check for non maskable interrupt (has higher priority over IRQ)
            if (NMIWaiting)
            {
                DoIRQ(0xfffa);
                NMIWaiting = false;
                _extraCycles += 6;
            }
            // Check for hardware interrupt, if enabled
            else if (!IF)
            {
                if(IRQWaiting)
                {
                    DoIRQ(0xfffe);
                    IRQWaiting = false;
                    _extraCycles += 6;
                }
            }

            _currentOP = _opCodeTable.OpCodes[memory[PC]];

            ExecuteInstruction();

            return _currentOP.Cycles + _extraCycles;
        }

        private void ExecuteInstruction()
        {
            int result;
            int oper = GetOperand(_currentOP.AddressMode);

            switch (_currentOP.OpCode)
            {
                // ADC - add memory to accumulator with carry
                // A+M+C -> A,C (NZCV)
                case 0x61:
                case 0x65:
                case 0x69:
                case 0x6d:
                case 0x71:
                case 0x72:
                case 0x75:
                case 0x79:
                case 0x7d:

                    if (DF)
                    {
                        result = HexToBCD(A) + HexToBCD((byte)oper);
                        if (CF) result++;

                        CF = (result > 99);

                        if (result > 99 )
                        {
                            result -= 100;
                        }
                        ZF = (result == 0);

                        // convert decimal result to hex BCD result
                        A = BCDToHex(result);

                        // Unlike ZF and CF, the NF flag represents the MSB after conversion
                        // to BCD.
                        NF = (A > 0x7f);

                        // extra clock cycle on CMOS in decimal mode
                        if (_cpuType == e6502Type.CMOS)
                            _extraCycles++;
                    }
                    else
                    {
                        ADC((byte)oper);
                    }
                    PC += _currentOP.Bytes;
                    break;

                // AND - and memory with accumulator
                // A AND M -> A (NZ)
                case 0x21:
                case 0x25:
                case 0x29:
                case 0x2d:
                case 0x31:
                case 0x32:
                case 0x35:
                case 0x39:
                case 0x3d:
                    result = A & oper;

                    NF = ((result & 0x80) == 0x80);
                    ZF = ((result & 0xff) == 0x00);

                    A = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // ASL - shift left one bit (NZC)
                // C <- (76543210) <- 0

                case 0x06:
                case 0x16:
                case 0x0a:
                case 0x0e:
                case 0x1e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x1e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // shift bit 7 into carry
                    CF = (oper >= 0x80);

                    // shift operand
                    result = oper << 1;

                    NF = ((result & 0x80) == 0x80);
                    ZF = ((result & 0xff) == 0x00);

                    SaveOperand(_currentOP.AddressMode, result);
                    PC += _currentOP.Bytes;

                    break;

                // BBRx - test bit in memory (no flags)
                // Test the zero page location and branch of the specified bit is clear
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                // Number of clock cycles is the same regardless if the branch is taken.
                case 0x0f:
                case 0x1f:
                case 0x2f:
                case 0x3f:
                case 0x4f:
                case 0x5f:
                case 0x6f:
                case 0x7f:

                    // upper nibble specifies the bit to check
                    byte check_bit = (byte)(_currentOP.OpCode >> 4);
                    byte check_value = 0x01;
                    for( int ii=0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }

                    // if the specified bit is 0 then branch
                    byte offset = memory[PC + 2];
                    PC += _currentOP.Bytes;

                    if ((oper & check_value) == 0x00)
                        PC += offset;

                    break;

                // BBSx - test bit in memory (no flags)
                // Test the zero page location and branch of the specified bit is set
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                // Number of clock cycles is the same regardless if the branch is taken.
                case 0x8f:
                case 0x9f:
                case 0xaf:
                case 0xbf:
                case 0xcf:
                case 0xdf:
                case 0xef:
                case 0xff:

                    // upper nibble specifies the bit to check (but ignore bit 7)
                    check_bit = (byte)((_currentOP.OpCode & 0x70) >> 4);
                    check_value = 0x01;
                    for (int ii = 0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }

                    // if the specified bit is 1 then branch
                    offset = memory[PC + 2];
                    PC += _currentOP.Bytes;

                    if ((oper & check_value) == check_value)
                        PC += offset;

                    break;

                // BCC - branch on carry clear
                case 0x90:
                    PC += _currentOP.Bytes;
                    CheckBranch(!CF, oper);
                    break;

                // BCS - branch on carry set
                case 0xb0:
                    PC += _currentOP.Bytes;
                    CheckBranch(CF, oper);
                    break;

                // BEQ - branch on zero
                case 0xf0:
                    PC += _currentOP.Bytes;
                    CheckBranch(ZF, oper);
                    break;

                // BIT - test bits in memory with accumulator (NZV)
                // bits 7 and 6 of oper are transferred to bits 7 and 6 of conditional register (N and V)
                // the zero flag is set to the result of oper AND accumulator
                case 0x24:
                case 0x2c:
                // added by 65C02
                case 0x34:
                case 0x3c:
                case 0x89:
                    result = A & oper;

                    // The WDC programming manual for 65C02 indicates NV are unaffected in immediate mode.
                    // The extended op code test program reflects this.
                    if (_currentOP.AddressMode != AddressModes.Immediate)
                    {
                        NF = ((oper & 0x80) == 0x80);
                        VF = ((oper & 0x40) == 0x40);
                    }

                    ZF = ((result & 0xff) == 0x00);

                    PC += _currentOP.Bytes;
                    break;

                // BMI - branch on negative
                case 0x30:
                    PC += _currentOP.Bytes;
                    CheckBranch(NF, oper);
                    break;

                // BNE - branch on non zero
                case 0xd0:
                    PC += _currentOP.Bytes;
                    CheckBranch(!ZF, oper);
                    break;

                // BPL - branch on non negative
                case 0x10:
                    PC += _currentOP.Bytes;
                    CheckBranch(!NF, oper);
                    break;

                // BRA - unconditional branch to immediate address
                // NOTE: In OpcodeList.txt the number of clock cycles is one less than the documentation.
                // This is because CheckBranch() adds one when a branch is taken, which in this case is always.
                case 0x80:
                    PC += _currentOP.Bytes;
                    CheckBranch(true, oper);
                    break;

                // BRK - force break (I)
                case 0x00:

                    // This is a software interrupt (IRQ).  These events happen in a specific order.

                    // Processor adds two to the current PC
                    PC += 2;

                    // Call IRQ routine
                    DoIRQ(0xfffe, true);

                    // Whether or not the decimal flag is cleared depends on the type of 6502 CPU.
                    // The CMOS 65C02 clears this flag but the NMOS 6502 does not.
                    if( _cpuType == e6502Type.CMOS )
                        DF = false;

                    break;
                // BVC - branch on overflow clear
                case 0x50:
                    PC += _currentOP.Bytes;
                    CheckBranch(!VF, oper);
                    break;

                // BVS - branch on overflow set
                case 0x70:
                    PC += _currentOP.Bytes;
                    CheckBranch(VF, oper);
                    break;

                // CLC - clear carry flag
                case 0x18:
                    CF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CLD - clear decimal mode
                case 0xd8:
                    DF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CLI - clear interrupt disable bit
                case 0x58:
                    IF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CLV - clear overflow flag
                case 0xb8:
                    VF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CMP - compare memory with accumulator (NZC)
                // CMP, CPX and CPY are unsigned comparisions
                case 0xc5:
                case 0xc9:
                case 0xc1:
                case 0xcd:
                case 0xd1:
                case 0xd2:
                case 0xd5:
                case 0xd9:
                case 0xdd:

                    byte temp = (byte)(A - oper);

                    CF = A >= (byte)oper;
                    ZF = A == (byte)oper;
                    NF = ((temp & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // CPX - compare memory and X (NZC)
                case 0xe0:
                case 0xe4:
                case 0xec:
                    temp = (byte)(X - oper);

                    CF = X >= (byte)oper;
                    ZF = X == (byte)oper;
                    NF = ((temp & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // CPY - compare memory and Y (NZC)
                case 0xc0:
                case 0xc4:
                case 0xcc:
                    temp = (byte)(Y - oper);

                    CF = Y >= (byte)oper;
                    ZF = Y == (byte)oper;
                    NF = ((temp & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // DEC - decrement memory by 1 (NZ)
                case 0xc6:
                case 0xce:
                case 0xd6:
                case 0xde:
                // added by 65C02
                case 0x3a:
                    result = oper - 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // DEX - decrement X by one (NZ)
                case 0xca:
                    result = X - 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    X = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // DEY - decrement Y by one (NZ)
                case 0x88:
                    result = Y - 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    Y = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // EOR - XOR memory with accumulator (NZ)
                case 0x41:
                case 0x45:
                case 0x49:
                case 0x4d:
                case 0x51:
                case 0x52:
                case 0x55:
                case 0x59:
                case 0x5d:
                    result = A ^ (byte)oper;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    A = (byte)result;

                    PC += _currentOP.Bytes;
                    break;

                // INC - increment memory by 1 (NZ)
                case 0xe6:
                case 0xee:
                case 0xf6:
                case 0xfe:
                // added by 65C02
                case 0x1a:
                    result = oper + 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // INX - increment X by one (NZ)
                case 0xe8:
                    result = X + 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    X = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // INY - increment Y by one (NZ)
                case 0xc8:
                    result = Y + 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    Y = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // JMP - jump to new location (two byte immediate)
                case 0x4c:
                case 0x6c:
                // added for 65C02
                case 0x7c:

                    if (_currentOP.AddressMode == AddressModes.Absolute)
                    {
                        PC = GetImmWord();
                    }
                    else if (_currentOP.AddressMode == AddressModes.Indirect)
                    {
                        PC = (ushort)(GetWordFromMemory(GetImmWord()));
                    }
                    else if( _currentOP.AddressMode == AddressModes.AbsoluteX)
                    {
                        PC = GetWordFromMemory((GetImmWord() + X));
                    }
                    else
                    {
                        throw new InvalidOperationException("This address mode is invalid with the JMP instruction");
                    }

                    // CMOS fixes a bug in this op code which results in an extra clock cycle
                    if (_currentOP.OpCode == 0x6c && _cpuType == e6502Type.CMOS)
                        _extraCycles++;
                    break;

                // JSR - jump to new location and save return address
                case 0x20:
                    // documentation says push PC+2 even though this is a 3 byte instruction
                    // When pulled via RTS 1 is added to the result
                    Push((ushort)(PC+2));  
                    PC = GetImmWord();
                    break;

                // LDA - load accumulator with memory (NZ)
                case 0xa1:
                case 0xa5:
                case 0xa9:
                case 0xad:
                case 0xb1:
                case 0xb2:
                case 0xb5:
                case 0xb9:
                case 0xbd:
                    A = (byte)oper;

                    ZF = ((A & 0xff) == 0x00);
                    NF = ((A & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // LDX - load index X with memory (NZ)
                case 0xa2:
                case 0xa6:
                case 0xae:
                case 0xb6:
                case 0xbe:
                    X = (byte)oper;

                    ZF = ((X & 0xff) == 0x00);
                    NF = ((X & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // LDY - load index Y with memory (NZ)
                case 0xa0:
                case 0xa4:
                case 0xac:
                case 0xb4:
                case 0xbc:
                    Y = (byte)oper;

                    ZF = ((Y & 0xff) == 0x00);
                    NF = ((Y & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;


                // LSR - shift right one bit (NZC)
                // 0 -> (76543210) -> C
                case 0x46:
                case 0x4a:
                case 0x4e:
                case 0x56:
                case 0x5e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x5e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // shift bit 0 into carry
                    CF = ((oper & 0x01) == 0x01);

                    // shift operand
                    result = oper >> 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // NOP - no operation
                case 0xea:
                    PC += _currentOP.Bytes;
                    break;

                // ORA - OR memory with accumulator (NZ)
                case 0x01:
                case 0x05:
                case 0x09:
                case 0x0d:
                case 0x11:
                case 0x12:
                case 0x15:
                case 0x19:
                case 0x1d:
                    result = A | (byte)oper;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    A = (byte)result;

                    PC += _currentOP.Bytes;
                    break;

                // PHA - push accumulator on stack
                case 0x48:
                    Push(A);
                    PC += _currentOP.Bytes;
                    break;

                // PHP - push processor status on stack
                case 0x08:
                    int sr = 0x00;

                    if (NF) sr = sr | 0x80;
                    if (VF) sr = sr | 0x40;
                    sr = sr | 0x20; // bit 5 is always 1
                    sr = sr | 0x10; // bit 4 is always 1 for PHP
                    if (DF) sr = sr | 0x08;
                    if (IF) sr = sr | 0x04;
                    if (ZF) sr = sr | 0x02;
                    if (CF) sr = sr | 0x01;

                    Push((byte)sr);
                    PC += _currentOP.Bytes;
                    break;

                // PHX - push X on stack
                case 0xda:
                    Push(X);
                    PC += _currentOP.Bytes;
                    break;

                // PHY - push Y on stack
                case 0x5a:
                    Push(Y);
                    PC += _currentOP.Bytes;
                    break;

                // PLA - pull accumulator from stack (NZ)
                case 0x68:
                    A = PopByte();
                    NF = (A & 0x80) == 0x80;
                    ZF = (A & 0xff) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // PLP - pull status from stack
                case 0x28:
                    sr = PopByte();

                    NF = (sr & 0x80) == 0x80;
                    VF = (sr & 0x40) == 0x40;
                    DF = (sr & 0x08) == 0x08;
                    IF = (sr & 0x04) == 0x04;
                    ZF = (sr & 0x02) == 0x02;
                    CF = (sr & 0x01) == 0x01;
                    PC += _currentOP.Bytes;
                    break;

                // PLX - pull X from stack (NZ)
                case 0xfa:
                    X = PopByte();
                    NF = (X & 0x80) == 0x80;
                    ZF = (X & 0xff) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // PLY - pull Y from stack (NZ)
                case 0x7a:
                    Y = PopByte();
                    NF = (Y & 0x80) == 0x80;
                    ZF = (Y & 0xff) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // RMBx - clear bit in memory (no flags)
                // Clear the zero page location of the specified bit
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                case 0x07:
                case 0x17:
                case 0x27:
                case 0x37:
                case 0x47:
                case 0x57:
                case 0x67:
                case 0x77:

                    // upper nibble specifies the bit to check
                     check_bit = (byte)(_currentOP.OpCode >> 4);
                     check_value = 0x01;
                    for (int ii = 0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }
                    check_value = (byte)~check_value;
                    SaveOperand(_currentOP.AddressMode, oper & check_value);
                    PC += _currentOP.Bytes;
                    break;

                // SMBx - set bit in memory (no flags)
                // Set the zero page location of the specified bit
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                case 0x87:
                case 0x97:
                case 0xa7:
                case 0xb7:
                case 0xc7:
                case 0xd7:
                case 0xe7:
                case 0xf7:

                    // upper nibble specifies the bit to check (but ignore bit 7)
                    check_bit = (byte)((_currentOP.OpCode & 0x70) >> 4);
                    check_value = 0x01;
                    for (int ii = 0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }
                    SaveOperand(_currentOP.AddressMode, oper | check_value);
                    PC += _currentOP.Bytes;
                    break;

                // ROL - rotate left one bit (NZC)
                // C <- 76543210 <- C
                case 0x26:
                case 0x2a:
                case 0x2e:
                case 0x36:
                case 0x3e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x3e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // perserve existing cf value
                    bool old_cf = CF;

                    // shift bit 7 into carry flag
                    CF = (oper >= 0x80);

                    // shift operand
                    result = oper << 1;

                    // old carry flag goes to bit zero
                    if (old_cf) result = result | 0x01;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);
                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // ROR - rotate right one bit (NZC)
                // C -> 76543210 -> C
                case 0x66:
                case 0x6a:
                case 0x6e:
                case 0x76:
                case 0x7e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x7e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // perserve existing cf value
                    old_cf = CF;

                    // shift bit 0 into carry flag
                    CF = (oper & 0x01) == 0x01;

                    // shift operand
                    result = oper >> 1;

                    // old carry flag goes to bit 7
                    if (old_cf) result = result | 0x80;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);
                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // RTI - return from interrupt
                case 0x40:
                    // pull SR
                    sr = PopByte();

                    NF = (sr & 0x80) == 0x80;
                    VF = (sr & 0x40) == 0x40;
                    DF = (sr & 0x08) == 0x08;
                    IF = (sr & 0x04) == 0x04;
                    ZF = (sr & 0x02) == 0x02;
                    CF = (sr & 0x01) == 0x01;

                    // pull PC
                    PC = PopWord();

                    break;

                // RTS - return from subroutine
                case 0x60:
                    PC = (ushort)(PopWord() + 1);
                    break;

                // SBC - subtract memory from accumulator with borrow (NZCV)
                // A-M-C -> A (NZCV)
                case 0xe1:
                case 0xe5:
                case 0xe9:
                case 0xed:
                case 0xf1:
                case 0xf2:
                case 0xf5:
                case 0xf9:
                case 0xfd:

                    if (DF)
                    {
                        result = HexToBCD(A) - HexToBCD((byte)oper);
                        if (!CF) result--;

                        CF = (result >= 0);

                        // BCD numbers wrap around when subtraction is negative
                        if (result < 0)
                            result += 100;
                        ZF = (result == 0);

                        A = BCDToHex(result);

                        // Unlike ZF and CF, the NF flag represents the MSB after conversion
                        // to BCD.
                        NF = (A > 0x7f);

                        // extra clock cycle on CMOS in decimal mode
                        if (_cpuType == e6502Type.CMOS)
                            _extraCycles++;
                    }
                    else
                    {
                        ADC((byte)~oper);
                    }
                    PC += _currentOP.Bytes;

                    break;

                // SEC - set carry flag
                case 0x38:
                    CF = true;
                    PC += _currentOP.Bytes;
                    break;

                // SED - set decimal mode
                case 0xf8:
                    DF = true;
                    PC += _currentOP.Bytes;
                    break;

                // SEI - set interrupt disable bit
                case 0x78:
                    IF = true;
                    PC += _currentOP.Bytes;
                    break;

                // STA - store accumulator in memory
                case 0x81:
                case 0x85:
                case 0x8d:
                case 0x91:
                case 0x92:
                case 0x95:
                case 0x99:
                case 0x9d:
                    SaveOperand(_currentOP.AddressMode, A);
                    PC += _currentOP.Bytes;
                    break;

                // STX - store X in memory
                case 0x86:
                case 0x8e:
                case 0x96:
                    SaveOperand(_currentOP.AddressMode, X);
                    PC += _currentOP.Bytes;
                    break;

                // STY - store Y in memory
                case 0x84:
                case 0x8c:
                case 0x94:
                    SaveOperand(_currentOP.AddressMode, Y);
                    PC += _currentOP.Bytes;
                    break;

                // STZ - Store zero
                case 0x64:
                case 0x74:
                case 0x9c:
                case 0x9e:
                    SaveOperand(_currentOP.AddressMode, 0);
                    PC += _currentOP.Bytes;
                    break;

                // TAX - transfer accumulator to X (NZ)
                case 0xaa:
                    X = A;
                    ZF = ((X & 0xff) == 0x00);
                    NF = ((X & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TAY - transfer accumulator to Y (NZ)
                case 0xa8:
                    Y = A;
                    ZF = ((Y & 0xff) == 0x00);
                    NF = ((Y & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TRB - test and reset bits (Z)
                // Perform bitwise AND between accumulator and contents of memory
                case 0x14:
                case 0x1c:
                    SaveOperand(_currentOP.AddressMode, ~A & oper);
                    ZF = (A & oper) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // TSB - test and set bits (Z)
                // Perform bitwise AND between accumulator and contents of memory
                case 0x04:
                case 0x0c:
                    SaveOperand(_currentOP.AddressMode, A | oper);
                    ZF = (A & oper) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // TSX - transfer SP to X (NZ)
                case 0xba:
                    X = SP;
                    ZF = ((X & 0xff) == 0x00);
                    NF = ((X & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TXA - transfer X to A (NZ)
                case 0x8a:
                    A = X;
                    ZF = ((A & 0xff) == 0x00);
                    NF = ((A & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TXS - transfer X to SP (no flags -- some online docs are incorrect)
                case 0x9a:
                    SP = X;
                    PC += _currentOP.Bytes;
                    break;

                // TYA - transfer Y to A (NZ)
                case 0x98:
                    A = Y;
                    ZF = ((A & 0xff) == 0x00);
                    NF = ((A & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // The original 6502 has undocumented and erratic behavior if
                // undocumented op codes are invoked.  The 65C02 on the other hand
                // are guaranteed to be NOPs although they vary in number of bytes
                // and cycle counts.  These NOPs are listed in the OpcodeList.txt file
                // so the proper number of clock cycles are used.
                //
                // Instructions STP (0xdb) and WAI (0xcb) will reach this case.
                // For now these are treated as a NOP.
                default:
                    PC += _currentOP.Bytes;
                    break;
            }
        }

        private int GetOperand(AddressModes mode)
        {
            int oper = 0;
            switch (mode)
            {
                // Accumulator mode uses the value in the accumulator
                case AddressModes.Accumulator:
                    oper = A;
                    break;

                // Retrieves the byte at the specified memory location
                case AddressModes.Absolute:             
                    oper = memory[ GetImmWord() ];
                    break;

                // Indexed absolute retrieves the byte at the specified memory location
                case AddressModes.AbsoluteX:

                    ushort imm = GetImmWord();
                    ushort result = (ushort)(imm + X);

                    if (_currentOP.CheckPageBoundary)
                    {
                        if ((imm & 0xff00) != (result & 0xff00)) _extraCycles += 1;
                    }
                    oper = memory[ result ];
                    break;
                case AddressModes.AbsoluteY:
                    imm = GetImmWord();
                    result = (ushort)(imm + Y);

                    if (_currentOP.CheckPageBoundary)
                    {
                        if ((imm & 0xff00) != (result & 0xff00)) _extraCycles += 1;
                    }
                    oper = memory[result]; break;

                // Immediate mode uses the next byte in the instruction directly.
                case AddressModes.Immediate:
                    oper = GetImmByte();
                    break;

                // Implied or Implicit are single byte instructions that do not use
                // the next bytes for the operand.
                case AddressModes.Implied:
                    break;

                // Indirect mode uses the absolute address to get another address.
                // The immediate word is a memory location from which to retrieve
                // the 16 bit operand.
                case AddressModes.Indirect:
                    oper = GetWordFromMemory(GetImmWord());
                    break;

                // The indexed indirect modes uses the immediate byte rather than the
                // immediate word to get the memory location from which to retrieve
                // the 16 bit operand.  This is a combination of ZeroPage indexed and Indirect.
                case AddressModes.XIndirect:

                    /*
                     * 1) fetch immediate byte
                     * 2) add X to the byte
                     * 3) obtain word from this zero page address
                     * 4) return the byte located at the address specified by the word
                     */

                    oper = memory[GetWordFromMemory( (byte)(GetImmByte() + X))];
                    break;

                // The Indirect Indexed works a bit differently than above.
                // The Y register is added *after* the deferencing instead of before.
                case AddressModes.IndirectY:

                    /*
                        1) Fetch the address (word) at the immediate zero page location
                        2) Add Y to obtain the final target address
                        3)Load the byte at this address
                    */

                    ushort addr = GetWordFromMemory(GetImmByte());
                    oper = memory[addr + Y];

                    if (_currentOP.CheckPageBoundary)
                    {
                        if ((oper & 0xff00) != (addr & 0xff00)) _extraCycles++;
                    }
                    break;


                // Relative is used for branching, the immediate value is a
                // signed 8 bit value and used to offset the current PC.
                case AddressModes.Relative:
                    oper = SignExtend(GetImmByte());
                    break;

                // Zero Page mode is a fast way of accessing the first 256 bytes of memory.
                // Best programming practice is to place your variables in 0x00-0xff.
                // Retrieve the byte at the indicated memory location.
                case AddressModes.ZeroPage:
                    oper = memory[GetImmByte()];
                    break;
                case AddressModes.ZeroPageX:
                    oper = memory[(GetImmByte() + X) & 0xff];
                    break;
                case AddressModes.ZeroPageY:
                    oper = memory[(GetImmByte() + Y) & 0xff];
                    break;

                // this mode is from the 65C02 extended set
                // works like ZeroPageY when Y=0
                case AddressModes.ZeroPage0:
                    oper = memory[GetWordFromMemory((GetImmByte()) & 0xff)];
                    break;

                // for this mode do the same thing as ZeroPage
                case AddressModes.BranchExt:
                    oper = memory[GetImmByte()];
                    break;
                default:
                    break;
            }
            return oper;
        }

        private void SaveOperand(AddressModes mode, int data)
        {
            switch (mode)
            {
                // Accumulator mode uses the value in the accumulator
                case AddressModes.Accumulator:
                    A = (byte)data;
                    break;

                // Absolute mode retrieves the byte at the indicated memory location
                case AddressModes.Absolute:
                    memory[GetImmWord()] = (byte)data;
                    break;
                case AddressModes.AbsoluteX:
                    memory[GetImmWord() + X] = (byte)data;
                    break;
                case AddressModes.AbsoluteY:
                    memory[GetImmWord() + Y] = (byte)data;
                    break;

                // Immediate mode uses the next byte in the instruction directly.
                case AddressModes.Immediate:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // Implied or Implicit are single byte instructions that do not use
                // the next bytes for the operand.
                case AddressModes.Implied:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // Indirect mode uses the absolute address to get another address.
                // The immediate word is a memory location from which to retrieve
                // the 16 bit operand.
                case AddressModes.Indirect:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // The indexed indirect modes uses the immediate byte rather than the
                // immediate word to get the memory location from which to retrieve
                // the 16 bit operand.  This is a combination of ZeroPage indexed and Indirect.
                case AddressModes.XIndirect:
                    memory[GetWordFromMemory((byte)(GetImmByte() + X))] = (byte)data;
                    break;

                // The Indirect Indexed works a bit differently than above.
                // The Y register is added *after* the deferencing instead of before.
                case AddressModes.IndirectY:
                    memory[GetWordFromMemory(GetImmByte()) + Y] = (byte)data;
                    break;

                // Relative is used for branching, the immediate value is a
                // signed 8 bit value and used to offset the current PC.
                case AddressModes.Relative:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // Zero Page mode is a fast way of accessing the first 256 bytes of memory.
                // Best programming practice is to place your variables in 0x00-0xff.
                // Retrieve the byte at the indicated memory location.
                case AddressModes.ZeroPage:
                    memory[GetImmByte()] = (byte)data;
                    break;
                case AddressModes.ZeroPageX:
                    memory[(GetImmByte() + X) & 0xff] = (byte)data;
                    break;
                case AddressModes.ZeroPageY:
                    memory[(GetImmByte() + Y) & 0xff] = (byte)data;
                    break;
                case AddressModes.ZeroPage0:
                    memory[GetWordFromMemory((GetImmByte()) & 0xff)] = (byte)data;
                    break;

                // for this mode do the same thing as ZeroPage
                case AddressModes.BranchExt:
                    memory[GetImmByte()] = (byte)data;
                    break;

                default:
                    break;
            }
        }

        private ushort GetWordFromMemory(int address)
        {
            return (ushort)((memory[address + 1] << 8 | memory[address]) & 0xffff);
        }

        private ushort GetImmWord()
        {
            return (ushort)((memory[PC + 2] << 8 | memory[PC + 1]) & 0xffff);
        }

        private byte GetImmByte()
        {
            return memory[PC + 1];
        }

        private int SignExtend(int num)
        {
            if (num < 0x80)
                return num;
            else
                return (0xff << 8 | num) & 0xffff;
        }

        private void Push(byte data)
        {
            memory[(0x0100 | SP)] = data;
            SP--;
        }

        private void Push(ushort data)
        {
            // HI byte is in a higher address, LO byte is in the lower address
            memory[(0x0100 | SP)] = (byte)(data >> 8);
            memory[(0x0100 | (SP-1))] = (byte)(data & 0xff);
            SP -= 2;
        }

        private byte PopByte()
        {
            SP++;
            return memory[(0x0100 | SP)];
        }

        private ushort PopWord()
        {
            // HI byte is in a higher address, LO byte is in the lower address
            SP += 2;
            ushort idx = (ushort)(0x0100 | SP);
            return (ushort)((memory[idx] << 8 | memory[idx-1]) & 0xffff);
        }

        private void ADC(byte oper)
        {
            ushort answer = (ushort)(A + oper);
            if (CF) answer++;

            CF = (answer > 0xff);
            ZF = ((answer & 0xff) == 0x00);
            NF = (answer & 0x80) == 0x80;

            //ushort temp = (ushort)(~(A ^ oper) & (A ^ answer) & 0x80);
            VF = (~(A ^ oper) & (A ^ answer) & 0x80) != 0x00;

            A = (byte)answer;
        }

        private int HexToBCD(byte oper)
        {
            // validate input is valid packed BCD 
            if (oper > 0x99)
                throw new InvalidOperationException("Invalid BCD number: " + oper.ToString("X2"));
            if ((oper & 0x0f) > 0x09)
                throw new InvalidOperationException("Invalid BCD number: " + oper.ToString("X2"));

            return ((oper >> 4) * 10) + (oper & 0x0f);
        }

        private byte BCDToHex(int result)
        {
            if (result > 0xff)
                throw new InvalidOperationException("Invalid BCD to hex number: " + result.ToString());

            if (result <= 9)
                return (byte)result;
            else
                return (byte)(((result / 10) << 4) + (result % 10));

        }

        private void DoIRQ(ushort vector)
        {
            DoIRQ(vector, false);
        }

        private void DoIRQ(ushort vector, bool isBRK)
        {
            // Push the MSB of the PC
            Push((byte)(PC >> 8));

            // Push the LSB of the PC
            Push((byte)(PC & 0xff));

            // Push the status register
            int sr = 0x00;
            if (NF) sr = sr | 0x80;
            if (VF) sr = sr | 0x40;

            sr = sr | 0x20;             // bit 5 is unused and always 1

            if(isBRK)
                sr = sr | 0x10;         // software interrupt (BRK) pushes B flag as 1
                                        // hardware interrupt pushes B flag as 0
            if (DF) sr = sr | 0x08;
            if (IF) sr = sr | 0x04;
            if (ZF) sr = sr | 0x02;
            if (CF) sr = sr | 0x01;

            Push((byte)sr);

            // set interrupt disable flag
            IF = true;

            // On 65C02, IRQ, NMI, and RESET also clear the D flag (but not on BRK) after pushing the status register.
            if (_cpuType == e6502Type.CMOS && !isBRK)
                DF = false;

            // load program counter with the interrupt vector
            PC = GetWordFromMemory(vector);
        }

        private void CheckBranch(bool flag, int oper)
        {
            if (flag)
            {
                // extra cycle on branch taken
                _extraCycles++;

                // extra cycle if branch destination is a different page than
                // the next instruction
                if ((PC & 0xff00) != ((PC + oper) & 0xff00))
                    _extraCycles++;

                PC += (ushort)oper;
            }

        }
    }
}

Nobody welcomed you to PPCG, I guess I'll take this chance to. This is a great first answer, and I hope to see you around more often. Have fun!
Stan Strum

Thank you @StanStrum! It was a SE post years ago about an 8086 emulator that got me interested in emulation and learning how these devices actually worked. It's been a lot of fun. Besides the above, I have a complete 8080 emulator and an 8086 one that is about 90% done.
Adam Mensch

That's awesome, I've been interested in making an emulator and/or a midlevel programming language, but I haven't the time, patience, or intellect to do so
Stan Strum
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.