Con đường hypercube dài nhất


18

Thử thách

Bạn được cung cấp hai chuỗi bit riêng biệt có cùng độ dài. (Ví dụ: 000111.) Mục tiêu của bạn là tìm một đường dẫn từ con đường này sang con đường khác sao cho:

  • Tại mỗi bước, bạn chỉ thay đổi một chút (bạn có thể đi từ 000bất kỳ 001, 010, 100).
  • Bạn không thể truy cập cùng một chuỗi bit hai lần.
  • Đường dẫn càng dài càng tốt, dưới những ràng buộc này.

Ví dụ: đi từ 000đến 111, chúng ta có thể đi theo con đường

000, 001, 011, 010, 110, 100, 101, 111

truy cập tất cả các chuỗi 8 bit có độ dài 3, vì vậy nó phải dài nhất có thể.

Quy tắc

  • Tiêu chuẩn áp dụng.
  • Bạn có thể lấy đầu vào là hai chuỗi số 0 và một, hoặc là hai mảng số 0 và một, hoặc là hai mảng của các giá trị boolean.
  • Bạn không thể lấy đầu vào là hai số nguyên với biểu diễn nhị phân đúng (viết 000111như 07không hợp lệ).
  • Nếu bạn muốn, bạn có thể lấy độ dài của chuỗi bit làm đầu vào.
  • Chương trình của bạn được phép xuất đường dẫn bằng cách in các chuỗi bit được truy cập cùng một lúc hoặc bằng cách trả về một chuỗi các chuỗi bit đã truy cập (mỗi chuỗi có cùng định dạng với đầu vào).
  • Đầu ra của bạn nên bao gồm điểm bắt đầu và kết thúc của đường dẫn (là đầu vào của bạn).
  • Đây là , mã ngắn nhất tính bằng byte thắng.

Ví dụ

0 1 -> 0, 1
10 01 -> 10, 00, 01 or 10, 11, 01
000 111 -> any of the following:

   000, 100, 110, 010, 011, 001, 101, 111

   000, 100, 101, 001, 011, 010, 110, 111

   000, 010, 110, 100, 101, 001, 011, 111

   000, 010, 011, 001, 101, 100, 110, 111

   000, 001, 101, 100, 110, 010, 011, 111

   000, 001, 011, 010, 110, 100, 101, 111

1001 1100 -> 1001, 0001, 0000, 0010, 0011, 0111, 0101, 0100, 0110, 1110, 1010, 1011, 1111, 1101, 1100 (other paths exist)

1
Chúng ta cũng có thể lấy giá trị boolean thay vì giá trị và số không?
flawr

@flawr Chắc chắn, điều đó tốt.
Misha Lavrov

Chúng tôi có thể cho rằng chúng tôi sẽ không nhận được hai chuỗi bit bằng nhau (hoặc chúng tôi có thể làm bất cứ điều gì nếu có)?
Jonathan Allan

1
@Jonathan ALLan Có, giả sử rằng chuỗi bit không bằng nhau.
Misha Lavrov

Câu trả lời:


6

Husk , 27 26 24 byte

→foΛεẊδṁ≠ÖLm↓≠⁰←ġ→PΠmṠe¬

Lực lượng vũ phu, nên rất chậm. Hãy thử trực tuyến!

Giải trình

Husk đọc tự nhiên từ phải sang trái.

←ġ→PΠmṠe¬  Hypercube sequences ending in second input, say y=[1,1,0]
     mṠe¬  Pair each element with its negation: [[0,1],[0,1],[1,0]]
    Π      Cartesian product: [[0,0,1],[1,0,1],..,[1,1,0]]
   P       Permutations.
 ġ→        Group by last element
←          and take first group.
           The permutations are ordered so that those with last element y come first,
           so they are grouped together and returned here.

ÖLm↓≠⁰  Find first input.
  m     For each permutation,
   ↓≠⁰  drop all elements before the first input.
ÖL      Sort by length.

foΛεẊδṁ≠  Check path condition.
fo        Keep those lists that satisfy:
    Ẋ      For each adjacent pair (e.g. [0,1,0] and [1,1,0]),
      ṁ    take sum of
       ≠   absolute differences
     δ     of corresponding elements: 1+0+0 gives 1.
  Λε       Each value is at most 1.

→  Finally, return last element (which has greatest length).

4

Toán học, 108 byte

a=#~FromDigits~2+1&;Last@PadLeft[IntegerDigits[#-1,2]&/@FindPath[HypercubeGraph@Length@#,a@#,a@#2,∞,All]]&

Đầu vào:

[{0, 0, 0, 0}, {1, 1, 1, 1}]

Đầu ra:

{{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 1}, {0, 0, 1, 0}, {0, 1, 1, 0},
 {0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 1}, {1, 0, 0, 1}, {1, 0, 0, 0},
 {1, 1, 0, 0}, {1, 1, 1, 0}, {1, 0, 1, 0}, {1, 0, 1, 1}, {1, 1, 1, 1}}

3

Toán học, 175 byte

Câu hỏi đầu tiên rất hay!

(m=#;n=#2;Last@SortBy[(S=Select)[S[Rest@Flatten[Permutations/@Subsets[Tuples[{0,1},(L=Length)@m]],1],First@#==m&&Last@#==n&],Union[EditDistance@@@Partition[#,2,1]]=={1}&],L])&   


Đầu vào

[{0, 0, 0}, {1, 1, 1}]


3

Haskell , 212 207 byte

Điều này có thể là quá dài, nhưng cuối cùng nó hoạt động. (Cảm ơn @Lynn về thủ thuật sản phẩm của cartesian !) Thansk @nimi cho -5 byte!

import Data.List
b%l=[l++[x|b/=last l,x`notElem`l,1==sum[1|(u,v)<-x`zip`last l,u/=v]]|x<-mapM id$[0>1..]<$b]
b!a|f<-nub.concat.((b%)<$>)=snd$maximum$map(length>>=(,))$filter((==b).last)$until(f>>=(==))f[[a]]

Hãy thử trực tuyến!

Giải trình:

b%l -- helper function:
    -- given a path l (that should end in b) this generates all possible extensions
    -- of l (if not possible also l itself) 
            x<-mapM id$[0>1..]<$b -- generate all possible vertices of the hypercube
             -- and check the criteria
           b/=last l,x`notElem`l,1==sum[1|(u,v)<-x`zip`last l,u/=v] 
             -- extend if possible
    [l++[x|  ...                                                   ]| ... ]
b!a| -- actual function: 
     -- first define a helper function:
    f<-nub.concat.((b%)<$>)
     -- begin with the vertex a and apply the function from above repeatedly
     -- until you cannot make the path any longer without violating the
     -- criteria 
                                                                             until(f>>=(==))f[[a]]
     -- only take the paths that actually end in b          
                                                          filter((==b).last)$
     -- and find the one with the maximum length    
                           =snd$maximum$map(length>>=(,))$    

x<-mapM id$[1>0,1<0]<$b
nimi

... Bạn có cần [True,False]không? Nếu [False,True]cũng hoạt động, bạn có thể sử dụng [0>1..].
nimi

Oh tuyệt vời, cảm ơn, tôi đã không biết rằng BoolEnum, và tôi quên rằng <$đã có sẵn (thử đầu tiên *>mà không phải là trong Prelude)!
flawr

3

Toán học 116 114 byte

Với một vài byte được lưu nhờ Misha Lavrov.

Last@FindPath[Graph[Rule@@@Cases[Tuples[Tuples[{0,1},{l=Length@#}],{2}],x_/;Count[Plus@@x,1]==1]],##,{1,2^l},Alll]&

Đầu vào (8 chiều)

[{1,0,0,1,0,0,0,1},{1,1,0,0,0,0,1,1}]//AbsoluteTiming

Đầu ra (chiều dài = 254, sau 1,82 giây)

{1.82393, {{1, 0, 0, 1, 0, 0, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0}, {0, 0,0, 0, 0, 0, 1, 1}, {0, 0, 0, 0, 0, 1, 1, 1}, {0, 0, 0, 0, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 1, 0}, {0, 0, 0, 0,1, 1, 1,0}, {0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 1}, {0, 0, 0, 0, 1, 0, 1, 1}, {0, 0, 0, 0,1, 1, 1, 1}, {0, 0, 0, 0, 1, 1, 0, 1}, {0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 1, 1, 1, 0, 0}, {0, 0, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 1,0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 1, 0}, {0, 0, 0, 1, 0, 0, 1, 1}, {0, 0, 0, 1, 0, 1, 1, 1}, {0, 0, 0, 1, 0, 1, 0, 1}, {0, 0, 0, 1, 1, 1, 0, 1}, {0, 0, 0, 1, 1, 0, 0, 1}, {0, 0, 0, 1, 1, 0, 0, 0}, {0, 0, 0, 1, 1, 0, 1, 0}, {0, 0, 0, 1, 1, 0, 1, 1}, {0, 0, 0, 1,1, 1, 1, 1}, {0, 0, 0, 1, 1, 1, 1, 0}, {0, 0, 0, 1, 0, 1, 1, 0}, {0, 0, 1, 1, 0, 1, 1, 0}, {0, 0, 1, 0, 0, 1, 1, 0}, {0, 0, 1, 0,0, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 1}, {0, 0, 1, 0, 0, 0, 1, 1}, {0, 0, 1, 0, 0, 1, 1, 1}, {0, 0, 1, 0,0, 1, 0, 1}, {0, 0, 1, 0, 0, 1, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 1}, {0, 0, 1, 0,1, 0, 1, 1}, {0, 0, 1, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 1, 1, 1, 0}, {0, 0, 1, 0, 1, 1, 1, 1}, {0, 0, 1, 0, 1, 1, 0, 1}, {0, 0, 1, 1,1, 1, 0, 1}, {0, 0, 1, 1, 0, 1, 0, 1}, {0, 0, 1, 1, 0, 0, 0, 1}, {0, 0, 1, 1, 0, 0, 0, 0}, {0, 0, 1, 1, 0, 0, 1, 0}, {0, 0, 1, 1,0, 0, 1, 1}, {0, 0, 1, 1, 0, 1, 1,1}, {0, 0, 1, 1, 1, 1, 1, 1}, {0, 0, 1, 1, 1, 0, 1, 1}, {0, 0, 1, 1, 1, 0, 0, 1}, {0, 0, 1, 1,1, 0, 0, 0}, {0, 0, 1, 1, 1, 0, 1, 0}, {0, 0, 1, 1, 1, 1, 1, 0}, {0, 0, 1, 1, 1, 1, 0, 0}, {0, 0, 1, 1, 0, 1, 0, 0}, {0, 1, 1, 1,0, 1, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 0}, {0, 1, 0, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 1}, {0, 1, 0, 0,0, 0, 1, 1}, {0, 1, 0, 0, 0, 0, 1, 0}, {0, 1, 0, 0, 0, 1, 1, 0}, {0, 1, 0, 0, 0, 1, 1, 1}, {0, 1, 0, 0, 0, 1, 0, 1}, {0, 1, 0, 0,1, 1, 0, 1}, {0, 1, 0, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 0, 0, 0}, {0, 1, 0, 0, 1, 0, 1, 0}, {0, 1, 0, 0, 1, 0, 1, 1}, {0, 1, 0, 0,1, 1, 1, 1}, {0, 1, 0, 0, 1, 1, 1, 0}, {0, 1, 0, 0, 1, 1, 0,0}, {0, 1, 0, 1, 1, 1, 0, 0}, {0, 1, 0, 1, 1, 0, 0, 0}, {0, 1, 0, 1,0, 0, 0, 0}, {0, 1, 0, 1, 0, 0, 0, 1}, {0, 1, 0, 1, 0, 0, 1, 1}, {0, 1, 0, 1, 0, 0, 1, 0}, {0, 1, 0, 1, 0, 1, 1, 0}, {0, 1, 0, 1,0, 1, 1, 1}, {0, 1, 0, 1, 0, 1, 0, 1}, {0, 1, 0, 1, 1, 1, 0, 1}, {0, 1, 0, 1, 1, 0, 0, 1}, {0, 1, 0, 1, 1, 0, 1, 1}, {0, 1, 0, 1,1, 0, 1, 0}, {0, 1, 0, 1, 1, 1, 1, 0}, {0, 1, 0, 1, 1, 1, 1, 1}, {0, 1, 1, 1, 1, 1, 1, 1}, {0, 1, 1, 0, 1, 1, 1, 1}, {0, 1, 1, 0,0, 1, 1, 1}, {0, 1, 1, 0, 0, 0, 1, 1}, {0, 1, 1, 0, 0, 0, 0, 1}, {0, 1, 1, 0, 0, 0, 0, 0}, {0, 1, 1, 0, 0, 0, 1, 0}, {0, 1, 1, 0,0, 1, 1, 0}, {0, 1, 1, 0, 0, 1, 0, 0}, {0, 1, 1, 0, 0, 1, 0, 1}, {0, 1, 1, 0, 1, 1, 0, 1}, {0, 1, 1, 0, 1, 0, 0, 1}, {0, 1, 1, 0,1, 0, 0, 0}, {0, 1, 1, 0, 1, 0, 1, 0}, {0, 1, 1, 0, 1, 0, 1, 1}, {0, 1, 1, 1, 1, 0, 1, 1}, {0, 1, 1, 1, 0, 0, 1, 1}, {0, 1, 1, 1,0, 0, 0, 1}, {0, 1, 1, 1, 0, 0, 0, 0}, {0, 1, 1, 1, 0, 0, 1, 0}, {0, 1, 1, 1, 0, 1, 1, 0}, {0, 1, 1, 1, 0, 1, 1, 1}, {0, 1, 1, 1,0, 1, 0, 1}, {0, 1, 1, 1, 1, 1, 0, 1}, {0, 1, 1, 1, 1, 0, 0, 1}, {0, 1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 1, 1, 0, 1, 0}, {0, 1, 1, 1,1, 1, 1, 0}, {0, 1, 1, 0, 1, 1, 1, 0}, {0, 1, 1, 0, 1, 1, 0, 0}, {0, 1, 1, 1, 1, 1, 0, 0}, {1, 1, 1, 1, 1, 1, 0, 0}, {1, 0, 1, 1,1, 1, 0, 0}, {1, 0, 0, 1, 1, 1, 0, 0}, {1, 0, 0, 0, 1, 1, 0, 0}, {1, 0, 0, 0, 0, 1, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0,0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0, 1, 0}, {1, 0, 0, 0, 0, 1, 1, 0}, {1, 0, 0, 0, 0, 1, 1, 1}, {1, 0, 0, 0,0, 1, 0, 1}, {1, 0, 0, 0, 1, 1, 0, 1}, {1, 0, 0, 0, 1, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 0, 0}, {1, 0, 0, 0, 1, 0, 1, 0}, {1, 0, 0, 0,1, 0, 1, 1}, {1, 0, 0, 0, 1, 1, 1, 1}, {1, 0, 0, 0, 1, 1, 1, 0}, {1, 0, 0, 1, 1, 1, 1, 0}, {1, 0, 0, 1, 0, 1, 1, 0}, {1, 0, 0, 1,0, 0, 1, 0}, {1, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 0, 1, 0, 1, 0, 0}, {1, 0, 0, 1, 0, 1, 0, 1}, {1, 0, 0, 1, 0, 1, 1, 1}, {1, 0, 0, 1,0, 0, 1, 1}, {1, 0, 0, 1, 1, 0, 1, 1}, {1, 0, 0, 1, 1, 0, 0, 1}, {1, 0, 0, 1, 1, 0, 0, 0}, {1, 0, 0, 1, 1, 0, 1, 0}, {1, 0, 1, 1,1, 0, 1, 0}, {1, 0, 1, 0, 1, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 0, 0, 0, 1}, {1, 0, 1, 0,0, 0, 1, 1}, {1, 0, 1, 0, 0, 1, 1, 1}, {1, 0, 1, 0, 0, 1, 0, 1}, {1, 0, 1, 0, 0, 1, 0, 0}, {1, 0, 1, 0, 0, 1, 1, 0}, {1, 0, 1, 0,1, 1, 1, 0}, {1, 0, 1, 0, 1, 1, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 1}, {1, 0, 1, 0, 1, 0, 1, 1}, {1, 0, 1, 0,1, 1, 1, 1}, {1, 0, 1, 0, 1, 1, 0, 1}, {1, 0, 1, 1, 1, 1, 0, 1}, {1, 0, 0, 1, 1, 1, 0, 1}, {1, 0, 0, 1, 1, 1, 1, 1}, {1, 0, 1, 1,1, 1, 1, 1}, {1, 0, 1, 1, 0, 1, 1, 1}, {1, 0, 1, 1, 0, 0, 1, 1}, {1, 0, 1, 1, 0, 0, 0, 1}, {1, 0, 1, 1, 0, 0, 0, 0}, {1, 0, 1, 1,0, 0, 1, 0}, {1, 0, 1, 1, 0, 1, 1, 0}, {1, 0, 1, 1, 0, 1, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 1}, {1, 1, 1, 1, 0, 1, 0, 1}, {1, 1, 0, 1,0, 1, 0, 1}, {1, 1, 0, 0, 0, 1, 0,1}, {1, 1, 0, 0, 0, 0, 0, 1}, {1, 1, 0, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 1, 0}, {1, 1, 0, 0,0, 1, 1, 0}, {1, 1, 0, 0, 0, 1, 0, 0}, {1, 1, 0, 0, 1, 1, 0, 0}, {1, 1, 0, 0, 1, 0, 0, 0}, {1, 1, 0, 0, 1, 0, 0, 1}, {1, 1, 0, 0,1, 0, 1, 1}, {1, 1, 0, 0, 1, 0, 1, 0}, {1, 1, 0, 0, 1, 1, 1, 0}, {1, 1, 0, 0, 1, 1, 1, 1}, {1, 1, 0, 0, 0, 1, 1, 1}, {1, 1, 0, 1,0, 1, 1, 1}, {1, 1, 0, 1, 0, 0, 1, 1}, {1, 1, 0, 1, 0, 0, 0, 1}, {1, 1, 0, 1, 0, 0, 0, 0}, {1, 1, 0, 1, 0, 0, 1, 0}, {1, 1, 0, 1,0, 1, 1, 0}, {1, 1, 0, 1, 0, 1, 0, 0}, {1, 1, 0, 1, 1, 1, 0, 0}, {1, 1, 0, 1, 1, 0, 0, 0}, {1, 1, 0, 1, 1, 0, 0, 1}, {1, 1, 0, 1,1, 0, 1, 1}, {1, 1, 0, 1, 1, 0, 1, 0}, {1, 1, 0, 1, 1, 1, 1, 0}, {1, 1, 0, 1, 1, 1, 1, 1}, {1, 1, 0, 1, 1, 1, 0, 1}, {1, 1, 0, 0,1, 1, 0, 1}, {1, 1, 1, 0, 1, 1, 0, 1}, {1, 1, 1, 0, 0, 1, 0, 1}, {1, 1, 1, 0, 0, 0, 0, 1}, {1, 1, 1, 0, 0, 0, 0, 0}, {1, 1, 1, 0,0, 0, 1, 0}, {1, 1, 1, 0, 0, 1, 1, 0}, {1, 1, 1, 0, 0, 1, 0, 0}, {1, 1, 1, 0, 1, 1, 0, 0}, {1, 1, 1, 0, 1, 0, 0, 0}, {1, 1, 1, 0,1, 0, 0, 1}, {1, 1, 1, 0, 1, 0, 1, 1}, {1, 1, 1, 0, 1, 0, 1, 0}, {1, 1, 1, 0, 1, 1, 1, 0}, {1, 1, 1, 0, 1, 1, 1, 1}, {1, 1, 1, 0,0, 1, 1, 1}, {1, 1, 1, 1, 0, 1, 1, 1}, {1, 1, 1, 1, 0, 1, 1, 0}, {1, 1, 1, 1, 0, 0, 1, 0}, {1, 1, 1, 1, 0, 0, 0, 0}, {1, 1, 1, 1,0, 0, 0, 1}, {1, 1, 1, 1, 1, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 0}, {1, 1, 1, 1,1, 0, 1, 0}, {1, 1, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 1, 1, 0, 0, 1}, {1, 0, 1, 1, 1, 0, 1, 1}, {1, 1, 1, 1,1, 0, 1, 1}, {1, 1, 1, 1, 0, 0, 1, 1}, {1, 1, 1, 0, 0, 0, 1, 1}, {1, 1, 0, 0, 0, 0, 1, 1}}}

Tuples[{0,1},{l=Length@#}],{2}]& tạo các số 0 ... 8 dưới dạng danh sách nhị phân.

Bên ngoài Tuples...{2}tạo ra tất cả các cặp theo thứ tự của các số nhị phân.

Plus@@x tổng hợp từng cặp, tạo ra các bộ ba 0, 1.

Cases....Count[Plus@@x, 1]==1 trả về tất cả các tổng có chứa một số 1. Chúng phát sinh khi hai số nhị phân ban đầu được kết nối bởi một cạnh.

Rules kết nối các đỉnh của đồ thị, mỗi đỉnh là một số nhị phân.

Graph tạo một biểu đồ tương ứng với các đỉnh và cạnh đã nói.

FindPath tìm thấy tối đa 2 ^ n đường nối từ đỉnh a đến đỉnh b, các số đã cho.

Last mất nhiều thời gian nhất của những con đường này.


Đối với ba chiều, biểu đồ có thể được biểu diễn trong một mặt phẳng như được hiển thị ở đây:

đồ thị phẳng

Đối với đầu vào, {0,0,0}, {1,1,1}sau đây là đầu ra:

{{{0, 0, 0}, {0, 0, 1}, {0, 1, 1}, {0, 1, 0}, {1, 1, 0}, {1, 0, 0}, {1, 0, 1}, {1, 1, 1}}}

Đường dẫn này có thể được tìm thấy trong biểu đồ trên.

Nó cũng có thể được hình thành như là đường dẫn sau trong 3 không gian, trong đó mỗi đỉnh tương ứng với một điểm {x,y,z} . {0,0,0} đại diện cho nguồn gốc và {1,1,1} đại diện cho điểm "đối diện" trong một khối đơn vị.

Vì vậy, đường dẫn giải pháp tương ứng với một đường biên của các cạnh dọc theo khối đơn vị. Trong trường hợp này, đường dẫn là Hamilton: nó truy cập mỗi đỉnh một lần (nghĩa là không có giao cắt và không có đỉnh bị bỏ qua).

g4


Có một lý do đơn giản tại sao 2 ^ n đường dẫn từ a đến b là đủ đường dẫn cho đường dẫn dài nhất trong số chúng là đường dẫn dài nhất?
Misha Lavrov

@Misha, Một câu hỏi rất hay.
DavidC

Đây là một cách để nghĩ về nó. Con đường dài nhất, một con đường Hamilton, sẽ ít hơn một số góc. (Chúng tôi đang đếm số cạnh trên đường dẫn.) Số lượng góc là 2 ^ n. Vì vậy, độ dài đường dẫn tối đa sẽ là 2 ^ n-1.
DavidC

Tôi đồng ý rằng độ dài đường dẫn tối đa luôn truy cập vào 2 ^ n đỉnh (nếu là Hamilton) hoặc 2 ^ n-1 đỉnh (nếu đường dẫn Hamilton là không thể do tính chẵn lẻ). Điều đó khác với câu hỏi của tôi, đó là: tại sao việc tạo 2 ^ (n + 2) (tôi đoán 2 ^ n là số sai) các đường dẫn khác nhau (một số trong đó có thể rất ngắn) đảm bảo rằng đoạn dài nhất trong số chúng sẽ là dài nhất trong tất cả các con đường khác nhau.
Misha Lavrov

Nói cách khác, tại sao 2^(l+2)trong mã của bạn?
Misha Lavrov

3

Haskell , 141 123 byte

c(a:b)=(1-a:b):map(a:)(c b)
c _=[]
q#z=[z]:[z:s|w<-c z,notElem w q,s<-(w:q)#w]
x!y=snd$maximum[(p*>x,p)|p<-[x]#x,last p==y]

Sử dụng danh sách các số nguyên. Hãy thử trực tuyến!

Giải trình

Các chức năng chính là !, và các chức năng phụ trợ là #c. Đưa ra một danh sách các bit, cđưa ra tất cả các cách có thể để lật một trong số chúng, ví dụ [0,1,1] -> [[1,1,1],[0,0,1],[0,1,0]].

c(a:b)=        -- c on nonempty list with head a and tail b is
 (1-a:b):      -- the list with negated a tacked to b, then
 map(a:)(c b)  -- c applied recursively to b, with a tacked to each of the results.
c _=[]         -- c on empty list gives an empty list.

Hàm #lấy danh sách danh sách ("bộ nhớ") và danh sách ("chuỗi bit ban đầu"). Nó xây dựng tất cả các đường dẫn hypercube bắt đầu bằng phần tử ban đầu, chỉ chứa các bitstr khác biệt và không bước trên các chuỗi trong bộ nhớ.

q#z=            -- # on memory q and initial string z is
 [z]:           -- the singleton path [z], and
 [z:s|          -- z tacked to each path s, where
  w<-c z,       -- w is obtained by flipping a bit of z,
  notElem w q,  -- w is not in the memory, and
  s<-(w:q)#w]   -- s is a path starting from w that avoids w and all elements of q.

Các chức năng chính !liên kết tất cả với nhau. Một mẹo tôi sử dụng ở đây là p*>x( xlặp đi lặp lại length p) thay vì length p. Vì các lần lặp lại dài hơn xđến sau theo thứ tự tự nhiên của danh sách, maximumchọn đường dẫn dài nhất trong cả hai trường hợp, vì tọa độ đầu tiên của các cặp được so sánh trước danh sách thứ hai.

x!y=          -- ! on inputs x and y is
 snd$maximum  -- the second element of the maximal pair in
 [(p*>x,p)|   -- the list of pairs (p*>x,p), where
  p<-[x]#x,   -- p is a path starting from x that avoids stepping on x, and
  last p==y]  -- p ends in y.

2

Thạch ,  25  27 byte

+2 byte để sửa lỗi với việc chơi golf của tôi :( hy vọng tôi sẽ tìm thấy một cách ngắn hơn.

ṫi¥³ḣi
L2ṗŒ!瀵ạ2\S€ỊẠ×LµÞṪ

Một chương trình đầy đủ lấy chuỗi bit sử dụng 12* làm danh sách. Các đối số là fromto . Chương trình in một danh sách các danh sách giống nhau.

* 01có thể được sử dụng thay thế với chi phí của một byte (thêm giữa L2ṗŒ!ç€...để giảm).

Hãy thử trực tuyến!

Làm sao?

đang cập nhật ...

ṫi¥³ḣi - Link 1, getSlice: list of lists, bitstrings; list, toBitstring
   ³   - get 3rd command line argument (fromBitstring)
  ¥    - last two links as a dyad:
 i     -   index (of fromBitstring in bitstrings)
ṫ      -   tail (bitstrings) from (that) index
     i - index (of toBitstring in that result)
    ḣ  - head to (that) index

L2ṗŒ!瀵ạ2\S€ỊẠ×LµÞṪ - Main link: list, fromBitstring; list, toBitstring
L                    - length (of fromBitstring)
 2                   - literal two
  ṗ                  - Cartesian power (of implicit range(2)=[1,2] with L(fromBitstring))
                     - ...i.e. all unique bitstrings of the required length (using [1,2])
   Œ!                - all permutations (of that list)
     ç€              - call the last link (1) as a dyad (i.e. f(that, toBitstring))
       µ         µÞ  - sort by the monadic function:
         2\          -   2-wise reduce with:
        ạ            -     absolute difference
           S€        -   sum €ach
             Ị       -   insignificant (vectorises) (abs(z)<=1 - for our purposes it's really just used for z==1 since only positive integers are possible)
              Ạ      -   all truthy? (1 if so 0 otherwise)
                L    -   length
               ×     -   multiply
                   Ṫ - tail (the last one is one of the maximal results)
                     - implicit print

Làm thế nào Jelly hoạt động là một bí ẩn đối với tôi, nhưng đầu vào [1,1][2,2]tạo ra đầu ra [[1, 1], [2, 1], [1, 2], [2, 2]]khi tôi dùng thử trực tuyến, đây không phải là một đường dẫn hợp lệ.
Misha Lavrov

Hmm, tôi phải làm gì đó sai - nhìn ...
Jonathan Allan

Được sửa bằng cách hoàn nguyên một trong các gôn của tôi trong 2 byte.
Jonathan Allan
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.