Số ngăn chặn chính (phiên bản tốc độ)


25

Đây là trình tự A054261

Số ngăn chứa số nguyên tố thứ n là số thấp nhất chứa số nguyên tố thứ n đầu tiên làm chuỗi con. Ví dụ, số 235 là số thấp nhất chứa 3 số nguyên tố đầu tiên làm chuỗi con, làm cho số thứ ba chứa số nguyên tố thứ ba.

Thật là tầm thường khi chỉ ra rằng bốn số nguyên tố đầu tiên là 2 , 23 , 2352357 , nhưng sau đó nó trở nên thú vị hơn. Vì số nguyên tố tiếp theo là 11, số ngăn chứa số nguyên tố tiếp theo không phải là 235711 , nhưng nó là 112357 vì nó được định nghĩa là số nhỏ nhất với thuộc tính.

Tuy nhiên, thử thách thực sự đến khi bạn vượt quá 11. Số ngăn chặn chính tiếp theo là 113257 . Lưu ý rằng trong số này, các chuỗi con 1113được chồng chéo. Số 3cũng trùng với số 13.

Thật dễ dàng để chứng minh rằng chuỗi này đang tăng lên, vì số tiếp theo cần phải hoàn thành tất cả các tiêu chí của số trước nó và có thêm một chuỗi con. Tuy nhiên, trình tự không tăng nghiêm ngặt, như được hiển thị bởi các kết quả cho n=10n=11.

Thử thách

Mục tiêu của bạn là tìm ra càng nhiều số ngăn chặn càng tốt. Chương trình của bạn sẽ xuất chúng theo thứ tự, bắt đầu bằng 2 và đi lên.

Quy tắc

  1. Bạn được phép mã số nguyên tố cứng.
  2. Bạn không được phép mã số nguyên tố cứng ( 2là ngoại lệ duy nhất) hoặc bất kỳ số ma thuật nào khiến thử thách trở nên tầm thường. Hãy tử tế.
  3. Bạn có thể sử dụng bất kỳ ngôn ngữ nào bạn muốn. Vui lòng bao gồm một danh sách các lệnh để có được môi trường sẵn sàng để thực thi mã.
  4. Bạn có thể tự do sử dụng cả CPU và GPU và bạn có thể sử dụng đa luồng.

Chấm điểm

Điểm chính thức sẽ là từ máy tính xách tay của tôi (dell XPS 9560). Mục tiêu của bạn là tạo ra càng nhiều số ngăn chặn chính càng tốt trong vòng 5 phút.

Thông số kỹ thuật

  • Intel Core i7-7700HQ 2,8 GHz (tăng 3,8 GHz) 4 lõi, 8 luồng.
  • RAM DDR4 16GB 2400 MHz
  • NVIDIA GTX 1050
  • Linux Mint 18.3 64-bit

Các số được tìm thấy cho đến nay, cùng với số nguyên tố cuối cùng được thêm vào số:

 1 =>                                                       2 (  2)
 2 =>                                                      23 (  3)
 3 =>                                                     235 (  5)
 4 =>                                                    2357 (  7)
 5 =>                                                  112357 ( 11)
 6 =>                                                  113257 ( 13)
 7 =>                                                 1131725 ( 17)
 8 =>                                               113171925 ( 19)
 9 =>                                              1131719235 ( 23)
10 =>                                            113171923295 ( 29)
11 =>                                            113171923295 ( 31)
12 =>                                           1131719237295 ( 37)
13 =>                                          11317237294195 ( 41)
14 =>                                        1131723294194375 ( 43)
15 =>                                      113172329419437475 ( 47)
16 =>                                     1131723294194347537 ( 53)
17 =>                                   113172329419434753759 ( 59)
18 =>                                  2311329417434753759619 ( 61)
19 =>                                231132941743475375961967 ( 67)
20 =>                               2311294134347175375961967 ( 71)
21 =>                              23112941343471735375961967 ( 73)
22 =>                             231129413434717353759619679 ( 79)
23 =>                           23112941343471735359619678379 ( 83)
24 =>                         2311294134347173535961967837989 ( 89)
25 =>                        23112941343471735359619678378979 ( 97)
26 =>                      2310112941343471735359619678378979 (101)
27 =>                    231010329411343471735359619678378979 (103)
28 =>                 101031071132329417343475359619678378979 (107)
29 =>              101031071091132329417343475359619678378979 (109)
30 =>              101031071091132329417343475359619678378979 (113)
31 =>           101031071091131272329417343475359619678378979 (127)
32 =>           101031071091131272329417343475359619678378979 (131)
33 =>         10103107109113127137232941734347535961967838979 (137)
34 =>      10103107109113127137139232941734347535961967838979 (139)
35 =>   10103107109113127137139149232941734347535961967838979 (149)
36 => 1010310710911312713713914923294151734347535961967838979 (151)

Cảm ơn Ardnauld, Ourous và japh đã mở rộng danh sách này.

Lưu ý rằng n = 10n = 11là cùng một số, vì 113171923295 là số thấp nhất chứa tất cả các số [2,3,5,7,11,13,17,19,23,29] , nhưng nó cũng chứa 31 .

Để tham khảo, bạn có thể sử dụng thực tế là tập lệnh Python ban đầu tôi đã viết để tạo danh sách này ở trên tính toán 12 thuật ngữ đầu tiên trong khoảng 6 phút.

Quy tắc bổ sung

Sau khi có kết quả đầu tiên, tôi nhận ra rằng rất có thể kết quả hàng đầu có thể có cùng số điểm. Trong trường hợp nếu hòa, người chiến thắng sẽ là người có thời gian ngắn nhất để tạo ra kết quả của họ. Nếu hai hoặc nhiều câu trả lời tạo ra kết quả nhanh như nhau, đó đơn giản sẽ là một chiến thắng gắn liền.

Lưu ý cuối cùng

Thời gian chạy 5 phút chỉ được đưa ra để đảm bảo ghi điểm công bằng. Tôi rất muốn biết liệu chúng ta có thể đẩy chuỗi OEIS đi xa hơn không (ngay bây giờ nó chứa 17 số). Với mã của chúng tôi, tôi đã tạo tất cả các số cho đến khi n = 26, nhưng tôi dự định để mã chạy trong một khoảng thời gian dài hơn.

Bảng điểm

  1. Python 3 + Google OR-Tools : 169
  2. Scala : 137 (không chính thức)
  3. Người giải quyết TSP của Concorde : 84 (không chính thức)
  4. Lắp ráp C ++ (GCC) + x86 : 62
  5. Sạch sẽ : 25
  6. JavaScript (Node.js) : 24

1
Gần đây tôi đã chuyển sang trình điều khiển nouveau thay vì trình điều khiển nvidia do điều khiển cpu khủng khiếp trong khi sử dụng nvidia. Nếu bất cứ ai gửi giải pháp tăng cường cuda, tôi sẽ không thể kiểm tra ngay, nhưng tôi sẽ thử kiểm tra trong một khoảng thời gian hợp lý.
maxb

liên quan đến quy tắc 2: điều gì xảy ra nếu thay vì mã hóa n, chúng ta sẽ mã hóa n-1 và bắt đầu tìm kiếm từ đó? :)
ngn

@ngn Tôi có thể phải chỉ định gần hơn một chút những gì được phép. Tất nhiên bạn được phép lưu kết quả trước đó, điều này làm cho việc tìm kiếm n=11tầm thường vì bạn chỉ cần xác minh rằng điều đó n=10cũng thỏa mãn điều kiện mới. Tôi cũng lập luận rằng mã hóa cứng chỉ giúp cho đến khi n=17, vì không có con số nào được biết đến ngoài thời điểm đó theo như tôi đã có thể tìm ra.
maxb

i có nghĩa là hardcoding [1,22,234,2356,112356,113256,1131724,113171924,1131719234,113171923294,113171923294,1131719237294]và bắt đầu tìm kiếm từ mỗi
NGN

4
Theo như tôi có thể nói, đây chỉ là một trường hợp đặc biệt của vấn đề siêu phổ biến ngắn nhất và đã được biết là hoàn thành NP, vì vậy đây về cơ bản là một trường hợp tránh hiệu quả.
Neil

Câu trả lời:


9

Python 3 + Google OR-Tools , điểm 169 trong 295 giây (điểm chính thức)

Làm thế nào nó hoạt động

Sau khi loại bỏ các số nguyên tố thừa có trong các số nguyên tố khác, hãy vẽ đồ thị có hướng từ một cạnh từ mỗi số nguyên tố của nó, với khoảng cách bằng 0 và một cạnh cho mỗi số nguyên tố từ mỗi tiền tố của nó, với khoảng cách được xác định bởi số chữ số được thêm vào . Chúng tôi tìm kiếm con đường ngắn nhất đầu tiên về mặt từ vựng thông qua biểu đồ bắt đầu từ tiền tố trống, đi qua từng nguyên tố (nhưng không nhất thiết phải qua từng tiền tố hoặc hậu tố) và kết thúc ở hậu tố trống.

Ví dụ: đây là các cạnh của đường dẫn tối ưu ε → 11 → 1 → 13 → 3 → 31 → 1 → 17 → ε → 19 → → 23 → ε → 29 → → 5 → với n = 11, tương ứng đến chuỗi đầu ra 113171923295.

đồ thị

So với việc giảm đơn giản cho vấn đề nhân viên bán hàng du lịch , lưu ý rằng bằng cách kết nối các số nguyên tố gián tiếp thông qua các nút hậu tố / tiền tố bổ sung này, thay vì trực tiếp với nhau, chúng tôi đã giảm đáng kể số cạnh mà chúng tôi cần xem xét. Nhưng vì các nút bổ sung không cần phải được duyệt chính xác một lần, đây không còn là một thể hiện của TSP.

Chúng tôi sử dụng trình giải hạn chế CP-SAT gia tăng của Google OR-Tools, trước tiên để giảm thiểu tổng chiều dài của đường dẫn, sau đó để giảm thiểu từng nhóm chữ số được thêm theo thứ tự. Chúng tôi khởi tạo mô hình chỉ với các ràng buộc cục bộ: mỗi nguyên tố đứng trước một hậu tố và thành công một tiền tố, trong khi mỗi hậu tố / tiền tố đi trước và thành công cùng một số nguyên tố. Mô hình kết quả có thể chứa các chu kỳ bị ngắt kết nối; nếu vậy, chúng tôi thêm các ràng buộc kết nối bổ sung một cách linh hoạt và chạy lại bộ giải.

import multiprocessing
from ortools.sat.python import cp_model


def superstring(strings):
    def gen_prefixes(s):
        for i in range(len(s)):
            a = s[:i]
            if a in affixes:
                yield a

    def gen_suffixes(s):
        for i in range(1, len(s) + 1):
            a = s[i:]
            if a in affixes:
                yield a

    def solve():
        def find_string(s):
            found_strings.add(s)
            for i in range(1, len(s) + 1):
                a = s[i:]
                if (
                    a in affixes
                    and a not in found_affixes
                    and solver.Value(suffix[s, a])
                ):
                    found_affixes.add(a)
                    q.append(a)
                    break

        def cut(skip):
            model.AddBoolOr(
                skip
                + [
                    suffix[s, a]
                    for s in found_strings
                    for a in gen_suffixes(s)
                    if a not in found_affixes
                ]
                + [
                    prefix[a, s]
                    for s in unused_strings
                    if s not in found_strings
                    for a in gen_prefixes(s)
                    if a in found_affixes
                ]
            )
            model.AddBoolOr(
                skip
                + [
                    suffix[s, a]
                    for s in unused_strings
                    if s not in found_strings
                    for a in gen_suffixes(s)
                    if a in found_affixes
                ]
                + [
                    prefix[a, s]
                    for s in found_strings
                    for a in gen_prefixes(s)
                    if a not in found_affixes
                ]
            )

        def search():
            while q:
                a = q.pop()
                for s in prefixed[a]:
                    if (
                        s in unused_strings
                        and s not in found_strings
                        and solver.Value(prefix[a, s])
                    ):
                        find_string(s)
            return not (unused_strings - found_strings)

        while True:
            if solver.Solve(model) != cp_model.OPTIMAL:
                raise RuntimeError("Solve failed")

            found_strings = set()
            found_affixes = set()
            if part is None:
                found_affixes.add("")
                q = [""]
            else:
                part_ix = solver.Value(part)
                p, next_affix, next_string = parts[part_ix]
                q = []
                find_string(next_string)
            if search():
                break

            if part is not None:
                if part_ix not in partb:
                    partb[part_ix] = model.NewBoolVar("partb%s_%s" % (step, part_ix))
                    model.Add(part == part_ix).OnlyEnforceIf(partb[part_ix])
                    model.Add(part != part_ix).OnlyEnforceIf(partb[part_ix].Not())
                cut([partb[part_ix].Not()])
                if last_string is None:
                    found_affixes.add(next_affix)
                else:
                    find_string(last_string)
                q.append(next_affix)
                if search():
                    continue

            cut([])

    solver = cp_model.CpSolver()
    solver.parameters.num_search_workers = 4
    affixes = {s[:i] for s in strings for i in range(len(s))} & {
        s[i:] for s in strings for i in range(1, len(s) + 1)
    }
    prefixed = {}
    for s in strings:
        for a in gen_prefixes(s):
            prefixed.setdefault(a, []).append(s)
    suffixed = {}
    for s in strings:
        for a in gen_suffixes(s):
            suffixed.setdefault(a, []).append(s)
    unused_strings = set(strings)
    last_string = None
    part = None

    model = cp_model.CpModel()
    prefix = {
        (a, s): model.NewBoolVar("prefix_%s_%s" % (a, s))
        for a in affixes
        for s in prefixed[a]
    }
    suffix = {
        (s, a): model.NewBoolVar("suffix_%s_%s" % (s, a))
        for a in affixes
        for s in suffixed[a]
    }
    for s in strings:
        model.Add(sum(prefix[a, s] for a in gen_prefixes(s)) == 1)
        model.Add(sum(suffix[s, a] for a in gen_suffixes(s)) == 1)
    for a in affixes:
        model.Add(
            sum(suffix[s, a] for s in suffixed[a])
            == sum(prefix[a, s] for s in prefixed[a])
        )

    length = sum(prefix[a, s] * (len(s) - len(a)) for a in affixes for s in prefixed[a])
    model.Minimize(length)
    solve()
    model.Add(length == solver.Value(length))

    out = ""
    for step in range(len(strings)):
        in_parts = set()
        parts = []
        for a in [""] if last_string is None else gen_suffixes(last_string):
            for s in prefixed[a]:
                if s in unused_strings and s not in in_parts:
                    in_parts.add(s)
                    parts.append((s[len(a) :], a, s))
        parts.sort()
        part = model.NewIntVar(0, len(parts) - 1, "part%s" % step)
        partb = {}
        for part_ix, (p, a, s) in enumerate(parts):
            if last_string is not None:
                model.Add(part != part_ix).OnlyEnforceIf(suffix[last_string, a].Not())
            model.Add(part != part_ix).OnlyEnforceIf(prefix[a, s].Not())
        model.Minimize(part)
        solve()
        part_ix = solver.Value(part)
        model.Add(part == part_ix)
        p, a, last_string = parts[part_ix]
        unused_strings.remove(last_string)
        out += p
    return out


def gen_primes():
    yield 2
    n = 3
    d = {}
    for p in gen_primes():
        p2 = p * p
        d[p2] = 2 * p
        while n <= p2:
            if n in d:
                q = d.pop(n)
                m = n + q
                while m in d:
                    m += q
                d[m] = q
            else:
                yield n
            n += 2


def gen_inputs():
    num_primes = 0
    strings = []

    for new_prime in gen_primes():
        num_primes += 1
        new_string = str(new_prime)
        strings = [s for s in strings if s not in new_string] + [new_string]
        yield strings


with multiprocessing.Pool() as pool:
    for i, out in enumerate(pool.imap(superstring, gen_inputs())):
        print(i + 1, out, flush=True)

Các kết quả

Dưới đây là 1000 số ngăn chặn đầu tiên , được tính trong 1 ngày rưỡi trên hệ thống 8 lõi / 16 luồng.


Giải pháp tuyệt vời! Sử dụng các chi tiết cụ thể của vấn đề một cách thông minh là chính xác những gì tôi muốn từ câu trả lời cho câu hỏi này. Tôi đã chạy nó trên máy tính xách tay của mình ngay bây giờ để ghi điểm không chính thức, và tôi đã đạt tới 153 trong vòng 5 phút. Tôi sẽ cung cấp cho bạn điểm chính thức của bạn sau ngày hôm nay và đảm bảo rằng đầu ra của bạn có vẻ đúng. Có vẻ như bạn đang dẫn đầu, xin chúc mừng!
maxb

Tôi đã xác nhận kết quả của @ AndersKaseorg lên tới 1000 với bộ giải dựa trên Concorde (chậm hơn khoảng 5 lần!) Tôi quyết định kiểm tra lại chúng bởi vì cả hai người giải quyết dường như sử dụng LP dấu phẩy động trong nội bộ và tôi đã thấy Concorde hủy bỏ vài lần do lỗi làm tròn số.
japh

Tôi biết điều này hơi muộn, nhưng cuối cùng tôi đã quyết định tải kết quả lên OEIS. Vì bạn là người chiến thắng thử thách, bạn có muốn được ghi nhận là người phát hiện ra những con số mới không?
maxb

@maxb Nghe có vẻ tốt với tôi, cảm ơn!
Anders Kaseorg

14

Lắp ráp C ++ (GCC) + x86, điểm 32 36 62 trong 259 giây (chính thức)

Kết quả tính toán cho đến nay. Máy tính của tôi hết bộ nhớ sau 65.

1 2
2 23
3 235
4 2357
5 112357
6 113257
7 1131725
8 113171925
9 1131719235
10 113171923295
11 113171923295
12 1131719237295
13 11317237294195
14 1131723294194375
15 113172329419437475
16 1131723294194347537
17 113172329419434753759
18 2311329417434753759619
19 231132941743475375961967
20 2311294134347175375961967
21 23112941343471735375961967
22 231129413434717353759619679
23 23112941343471735359619678379
24 2311294134347173535961967837989
25 23112941343471735359619678378979
26 2310112941343471735359619678378979
27 231010329411343471735359619678378979
28 101031071132329417343475359619678378979
29 101031071091132329417343475359619678378979
30 101031071091132329417343475359619678378979
31 101031071091131272329417343475359619678378979
32 101031071091131272329417343475359619678378979
33 10103107109113127137232941734347535961967838979
34 10103107109113127137139232941734347535961967838979
35 10103107109113127137139149232941734347535961967838979
36 1010310710911312713713914923294151734347535961967838979
37 1010310710911312713713914915157232941734347535961967838979
38 1010310710911312713713914915157163232941734347535961967838979
39 10103107109113127137139149151571631672329417343475359619798389
40 10103107109113127137139149151571631672329417343475359619798389
41 1010310710911312713713914915157163167173232941794347535961978389
42 101031071091131271371391491515716316717323294179434753596181978389
43 101031071091131271371391491515716316723294173434753596181917978389
44 101031071091131271371391491515716316717323294179434753596181919383897
45 10103107109113127137139149151571631671731792329418191934347535961978389
46 10103107109113127137139149151571631671731791819193232941974347535961998389
47 101031071091271313714915157163167173179181919321139232941974347535961998389
48 1010310710912713137149151571631671731791819193211392232941974347535961998389
49 1010310710912713137149151571631671731791819193211392232272941974347535961998389
50 10103107109127131371491515716316717317918191932113922322722941974347535961998389
51 101031071091271313714915157163167173179181919321139223322722941974347535961998389
52 101031071091271313714915157163167173179181919321139223322722923941974347535961998389
53 1010310710912713137149151571631671731791819193211392233227229239241974347535961998389
54 101031071091271313714915157163167173179211392233227229239241819193251974347535961998389
55 101031071091271313714915157163167173179211392233227229239241819193251972574347535961998389
56 101031071091271313714915157163167173179211392233227229239241819193251972572634347535961998389
57 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
58 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
59 1010310710912713137149151571631671731792113922332277229239241819193251972572632694347535961998389
60 101031071091271313714915157163167173211392233227722923924179251819193257263269281974347535961998389
61 1010310710912713137149151571631671732113922332277229239241792518191932572632692819728343475359619989
62 10103107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
63 1010307107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
64 10103071071091271311371391491515716316721173223322772293239241792518191932572632692819728343475359619989
65 10103071071091271311371491515716313916721173223322772293239241792518191932572632692819728343475359619989

Tất cả đều đồng ý với đầu ra của bộ giải dựa trên Concorde , vì vậy chúng có cơ hội chính xác cao.

Thay đổi:

  • Tính toán sai cho chiều dài bối cảnh cần thiết. Phiên bản trước đó là 1 quá lớn, và cũng có một lỗi. Điểm: 32 34

  • Đã thêm tối ưu hóa nhóm ngữ cảnh bằng nhau. Điểm: 34 36

  • Đại tu thuật toán để sử dụng các chuỗi không ngữ cảnh đúng cách, cộng với một số tối ưu hóa khác. Điểm: 36 62

  • Đã thêm một bài viết thích hợp.

  • Đã thêm biến thể số nguyên tố.

Làm thế nào nó hoạt động

Cảnh báo: đây là một bãi rác não. Di chuyển đến cuối nếu bạn chỉ muốn mã.

Các từ viết tắt:

Chương trình này về cơ bản sử dụng thuật toán lập trình động sách giáo khoa cho TSP.

  1. Cộng với việc giảm từ PCN / SCS, vấn đề chúng tôi thực sự đang giải quyết, thành TSP.
  2. Cộng với việc sử dụng bối cảnh vật phẩm thay vì tất cả các chữ số trong mỗi mục.
  3. Cộng với việc phân chia vấn đề dựa trên các số nguyên tố không thể trùng với các đầu của các số nguyên tố khác.
  4. Cộng các phép tính hợp nhất cho các số nguyên tố có cùng chữ số bắt đầu / kết thúc.
  5. Cộng với bảng tra cứu được tính toán trước và bảng băm tùy chỉnh.
  6. Cộng với một số tải trước và đóng gói bit cấp thấp.

Đó là rất nhiều lỗi tiềm năng. Sau khi chơi xung quanh với mục của anselm và không dỗ được bất kỳ kết quả sai nào từ nó, ít nhất tôi nên chứng minh rằng cách tiếp cận tổng thể của tôi là đúng.

Mặc dù giải pháp dựa trên Concorde nhanh hơn (nhiều, nhiều), nhưng nó dựa trên cùng một mức giảm, vì vậy giải thích này áp dụng cho cả hai. Ngoài ra, giải pháp này có thể được điều chỉnh cho OEIS A054260 , chuỗi số nguyên tố chứa nguyên tố; Tôi không biết làm thế nào để giải quyết vấn đề đó một cách hiệu quả trong khung TSP. Vì vậy, nó vẫn còn liên quan.

Giảm TSP

Hãy bắt đầu bằng cách thực sự chứng minh rằng giảm xuống TSP là chính xác. Chúng tôi có một bộ dây, nói

A = 13, 31, 37, 113, 137, 211

và chúng tôi muốn tìm siêu chuỗi nhỏ nhất có chứa các mặt hàng này.

Biết chiều dài là đủ

Đối với PCN, nếu có nhiều chuỗi ngắn nhất, chúng ta phải trả về chuỗi nhỏ nhất theo từ vựng. Nhưng chúng ta sẽ xem xét một vấn đề khác (và dễ dàng hơn).

  • SCS : Đưa ra một tiền tố ban đầu và một tập hợp các mục, tìm bất kỳ chuỗi ngắn nhất có chứa tất cả các mục dưới dạng chuỗi con và bắt đầu với tiền tố đó.
  • SCS-Chiều dài : Chỉ cần tìm chiều dài của SCS.

Nếu chúng ta có thể giải quyết SCS-length, chúng ta có thể xây dựng lại giải pháp nhỏ nhất và thu được PCN. Nếu chúng tôi biết rằng giải pháp nhỏ nhất bắt đầu bằng tiền tố của chúng tôi, chúng tôi sẽ cố gắng mở rộng nó bằng cách nối thêm từng mục, theo thứ tự từ điển và giải quyết lại độ dài. Khi chúng tôi tìm thấy mục nhỏ nhất có độ dài giải pháp là như nhau, chúng tôi biết rằng đây phải là mục tiếp theo trong giải pháp nhỏ nhất (tại sao?), Vì vậy hãy thêm nó và lặp lại trên các mục còn lại. Phương pháp tiếp cận giải pháp này được gọi là tự giảm .

Tham quan biểu đồ chồng chéo tối đa

Giả sử chúng ta bắt đầu giải SCS cho ví dụ trên bằng tay. Chúng tôi có thể:

  • Loại bỏ 1337, bởi vì chúng đã là chất nền của các mặt hàng khác. Bất kỳ giải pháp nào có chứa 137, ví dụ, cũng phải chứa 1337.
  • Bắt đầu xem xét việc kết hợp 113,137 → 1137, 211,113 → 2113vv

Thực tế đây là điều đúng đắn, nhưng hãy chứng minh điều đó vì sự hoàn chỉnh. Lấy bất kỳ giải pháp SCS nào; ví dụ, một siêu chuỗi ngắn nhất A

2113137

và nó có thể được phân tách thành một phần của tất cả các mục trong A:

211
 113
   31
    137

(Chúng tôi bỏ qua các mục dư thừa 13, 37.) Quan sát rằng:

  1. Vị trí bắt đầu và kết thúc của mỗi mục tăng ít nhất 1.
  2. Mỗi mục được chồng chéo với mục trước đến mức lớn nhất có thể.

Chúng tôi sẽ chỉ ra rằng mọi siêu chuỗi ngắn nhất có thể được phân tách theo cách này:

  1. Đối với mỗi cặp vật phẩm liền kề x,y, ybắt đầu và kết thúc ở các vị trí sau hơn x. Nếu điều này không đúng, thì đó xlà một chuỗi con yhoặc ngược lại. Nhưng chúng tôi đã loại bỏ tất cả các mục là chất nền, vì vậy điều đó không thể xảy ra.

  2. Giả sử các mục liền kề trong chuỗi có sự chồng chéo nhỏ hơn tối đa, ví dụ 21113thay vì 2113. Nhưng điều đó sẽ làm cho 1dư thừa. Không có mục nào sau này cần chữ cái đầu 1(như trong 2 1 113), vì nó xuất hiện sớm hơn 113và tất cả các mục xuất hiện sau 113không thể bắt đầu bằng một chữ số trước 113(xem điểm 1). Một đối số tương tự ngăn không cho phần bổ sung cuối cùng 1(như trong 211 1 3) được sử dụng bởi bất kỳ mục nào trước đó 211. Nhưng theo định nghĩa, siêu chuỗi ngắn nhất của chúng tôi sẽ không có các chữ số thừa, do đó, sự trùng lặp không tối đa như vậy sẽ không xảy ra.

Với các thuộc tính này, chúng tôi có thể chuyển đổi bất kỳ vấn đề SCS nào thành TSP:

  1. Loại bỏ tất cả các mục là chất nền của các mục khác.
  2. Tạo một đồ thị có hướng có một đỉnh cho mỗi mục.
  3. Đối với mỗi cặp mặt hàng x, y, thêm một cạnh từ xđể ycó trọng lượng là số biểu tượng bổ sung thêm bằng cách phụ thêm yđể xcó sự chồng chéo tối đa. Ví dụ: chúng tôi sẽ thêm một cạnh từ 211đến 113với trọng số 1, bởi vì 2113thêm một chữ số nữa 211. Lặp lại cho các cạnh từ yđến x.
  4. Thêm một đỉnh cho tiền tố ban đầu và các cạnh từ nó cho tất cả các mục khác.

Bất kỳ đường dẫn nào trên biểu đồ này, từ tiền tố ban đầu, tương ứng với phép nối chồng chéo tối đa của tất cả các mục trên đường dẫn đó và tổng trọng số của đường dẫn bằng với độ dài chuỗi được nối. Do đó, mỗi chuyến tham quan có trọng lượng thấp nhất, truy cập tất cả các mục ít nhất một lần, tương ứng với một siêu chuỗi ngắn nhất.

Và đó là việc giảm từ SCS (và SCS-length) xuống TSP.

Thuật toán lập trình động

Đây là một thuật toán cổ điển, nhưng chúng tôi sẽ sửa đổi nó một chút, vì vậy đây là một lời nhắc nhanh.

(Tôi đã viết đây là thuật toán cho SCS-length thay vì TSP. Về cơ bản chúng tương đương, nhưng từ vựng SCS giúp khi chúng ta đạt được các tối ưu hóa dành riêng cho SCS.)

Gọi tập hợp các mục đầu vào Avà tiền tố đã cho P. Đối với mọi ktập hợp con Strong Avà mọi phần tử ecủa S, chúng tôi tính toán độ dài của chuỗi ngắn nhất bắt đầu bằng P, chứa tất cả Svà kết thúc bằng e. Điều này liên quan đến việc lưu trữ một bảng từ các giá trị của (S, e)Độ dài SCS của chúng.

Khi chúng ta đến từng tập hợp con S, bảng cần phải chứa kết quả S - {e}cho tất cả etrong S. Như bảng có thể nhận được khá lớn, tôi tính toán các kết quả cho tất cả kcác tập con -element, sau đó k+1vv Đối với điều này, chúng ta chỉ cần để lưu trữ các kết quả cho kk+1bất cứ lúc nào một. Điều này làm giảm việc sử dụng bộ nhớ theo hệ số khoảng sqrt(|A|).

Thêm một chi tiết: thay vì tính chiều dài SCS tối thiểu, tôi thực sự tính tổng chồng chéo tối đa giữa các mục. (Để có được Độ dài SCS, chỉ cần trừ tổng số chồng lấp khỏi tổng độ dài của các mục.) Sử dụng lớp phủ sẽ giúp một số tối ưu hóa sau.

[2.] Bối cảnh vật phẩm

Một bối cảnh là hậu tố dài nhất của một mục có thể trùng với các mục sau. Nếu các mục của chúng tôi là 113,211,311, thì đó 11là bối cảnh cho 211311. (Đây cũng là bối cảnh tiền tố 113, mà chúng ta sẽ xem xét trong phần [4.])

Trong thuật toán DP ở trên, chúng tôi đã theo dõi các giải pháp SCS kết thúc với từng mục, nhưng chúng tôi thực sự không quan tâm đến mục nào SCS kết thúc. Tất cả những gì chúng ta cần biết là bối cảnh. Do đó, ví dụ, nếu hai SCS cho cùng một tập kết thúc 2343, bất kỳ SCS nào tiếp tục từ một cũng sẽ hoạt động cho các SCS khác.

Đây là một tối ưu hóa đáng kể, bởi vì các số nguyên tố không tầm thường chỉ kết thúc bằng các chữ số 1 3 7 9. Bốn bối cảnh một chữ số 1,3,7,9(cộng với bối cảnh trống) trên thực tế là đủ để tính toán các PCN cho các số nguyên tố lên tới 131.

[3.] Các mục không có ngữ cảnh

Những người khác đã chỉ ra rằng nhiều số nguyên tố bắt đầu bằng các chữ số 2,4,5,6,8, chẳng hạn như 23,29,41,43.... Không ai trong số này có thể trùng lặp với một số nguyên tố trước đó (ngoài 25, các số nguyên tố không thể kết thúc bằng các chữ số này 25sẽ bị xóa dưới dạng dự phòng). Trong mã, chúng được gọi là các chuỗi không ngữ cảnh .

Nếu đầu vào của chúng tôi có các mục không ngữ cảnh, mọi giải pháp SCS có thể được chia thành các khối

<prefix>... 23... 29... 41... 43...

và các lớp phủ trong mỗi khối độc lập với các khối khác. Chúng ta có thể xáo trộn các khối hoặc trao đổi các mục giữa các khối có cùng bối cảnh mà không thay đổi độ dài SCS.

Do đó, chúng ta chỉ cần theo dõi các thể multisets của bối cảnh, một cho mỗi khối.

Ví dụ đầy đủ: đối với các số nguyên tố nhỏ hơn 100, chúng tôi có 11 mục không ngữ cảnh và bối cảnh của chúng:

23 29 41 43 47 53 59 61 67 83 89
 3  9  1  3  7  3  9  1  7  3  9

Bối cảnh nhiều trang ban đầu của chúng tôi:

1 1 3 3 3 3 7 7 9 9 9

Mã này đề cập đến những điều này như bối cảnh kết hợp , hoặc các liên kết . Sau đó, chúng ta chỉ cần xem xét các tập hợp con của các mục còn lại:

11 13 17 19 31 37 71 73 79 97

[4.] Hợp nhất bối cảnh

Khi chúng tôi nhận được các số nguyên tố có 3 chữ số trở lên, sẽ có nhiều dự phòng hơn:

 101 151 181 191 ...
 107 127 157 167 197 ...
 109 149 1009 ...

Các nhóm này có chung bối cảnh bắt đầu và kết thúc (thông thường, nó phụ thuộc vào các số nguyên tố khác trong đầu vào), vì vậy chúng không thể phân biệt được khi chồng lấp các mục khác. Chúng tôi chỉ quan tâm đến sự chồng chéo, vì vậy chúng tôi có thể coi các số nguyên tố trong các nhóm bối cảnh bình đẳng này là không thể phân biệt được. Bây giờ các tập con DP của chúng tôi được ngưng tụ thành nhiều khối

4 × 1_1
5 × 1_7
3 × 1_9

(Đây cũng là lý do tại sao bộ giải tối đa hóa chiều dài chồng lấp thay vì giảm thiểu chiều dài SCS: tối ưu hóa này duy trì độ dài chồng lấp.)

Tóm tắt: tối ưu hóa cấp cao

Chạy với INFOđầu ra gỡ lỗi sẽ in số liệu thống kê như

solve: N=43, N_search=26, ccontext_size=18, #contexts=7, #eq_context_groups=16

Dòng đặc biệt này dành cho SCS - Độ dài của 62 số nguyên tố đầu tiên, 2tới 293.

  • Sau khi loại bỏ các vật phẩm dư thừa, chúng ta còn lại 43 số nguyên tố không phải là chuỗi con của nhau.
  • Có 7 bối cảnh độc đáo : 1,3,7,11,13,27cộng với chuỗi trống.
  • 17 trong số 43 số nguyên tố không có ngữ cảnh : 43,47,53,59,61,89,211,223,227,229,241,251,257,263,269,281,283. Những cái này và tiền tố đã cho (trong trường hợp này là chuỗi rỗng) tạo thành cơ sở của bối cảnh kết hợp ban đầu .
  • Trong 26 mục còn lại ( N_search), có 16 nhóm bối cảnh bằng nhau không cần thiết .

Bằng cách khai thác các cấu trúc này, phép tính SCS-length chỉ cần kiểm tra 8498336 (multiset, ccontext)kết hợp. Lập trình động đơn giản sẽ thực 43×2^43 > 3×10^14hiện các bước và vũ phu buộc các hoán vị sẽ thực 6×10^52hiện các bước. Chương trình vẫn cần chạy SCS-length nhiều lần nữa để xây dựng lại giải pháp PCN, nhưng điều đó không mất nhiều thời gian hơn.

[5., 6.] Tối ưu hóa cấp thấp

Thay vì thực hiện các thao tác chuỗi, bộ giải Độ dài SCS hoạt động với các chỉ mục của các mục và ngữ cảnh. Tôi cũng tính toán trước số tiền chồng lấp giữa mỗi cặp bối cảnh và mục.

Mã ban đầu sử dụng GCC unordered_map, dường như là bảng băm với các nhóm danh sách được liên kết và kích thước băm chính (nghĩa là các bộ phận đắt tiền). Vì vậy, tôi đã viết bảng băm của riêng mình với kích thước thăm dò tuyến tính và sức mạnh của hai kích cỡ. Điều này giúp tăng tốc độ 3 × và giảm 3 × bộ nhớ.

Mỗi trạng thái bảng bao gồm nhiều mục, bối cảnh kết hợp và số lượng chồng lấp. Chúng được đóng gói thành các mục 128 bit: 8 cho số lượng chồng lấp, 56 cho multiset (dưới dạng bitet với mã hóa độ dài chạy) và 64 cho ccontext (RLE phân định 1). Mã hóa và giải mã ccontext là phần khó nhất và cuối cùng tôi đã sử dụng PDEPhướng dẫn mới (nó rất mới, GCC chưa có nội tại cho nó).

Cuối cùng, việc truy cập bảng băm thực sự rất chậm khi Ntrở nên lớn, vì bảng không còn phù hợp với bộ đệm nữa. Nhưng lý do duy nhất chúng tôi viết vào bảng băm, là để cập nhật số lượng trùng lặp được biết đến tốt nhất cho mỗi trạng thái. Chương trình tách bước này thành một hàng đợi tìm nạp và vòng lặp bên trong tìm nạp trước mỗi bảng tra cứu một vài lần lặp trước khi thực sự cập nhật vị trí đó. Tăng tốc 2 × khác trên máy tính của tôi.

Tiền thưởng: cải thiện hơn nữa

AKA Làm thế nào là nhanh như vậy?

Tôi không biết nhiều về các thuật toán TSP, vì vậy đây là một phỏng đoán sơ bộ.

Concorde sử dụng phương pháp phân nhánh để giải quyết các TSP.

  • Nó mã hóa TSP như một chương trình tuyến tính số nguyên
  • Nó sử dụng các phương pháp lập trình tuyến tính, cũng như các phương pháp phỏng đoán ban đầu, để đạt được giới hạn trên và dưới trên khoảng cách tham quan tối ưu
  • Các giới hạn này sau đó được đưa vào một nhánh và thuật toán đệ quy ràng buộc tìm kiếm giải pháp tối ưu. Phần lớn của cây tìm kiếm có thể được cắt tỉa, nếu giới hạn dưới được tính cho cây con vượt quá giới hạn trên đã biết
  • Nó cũng tìm kiếm các mặt phẳng cắt để thắt chặt thư giãn LP và có được giới hạn tốt hơn. Thông thường, các phần cắt này mã hóa kiến ​​thức về thực tế là các biến quyết định phải là số nguyên

Ý tưởng rõ ràng chúng ta có thể thử:

  • Cắt tỉa trong bộ giải Độ dài SCS, đặc biệt là khi tái cấu trúc giải pháp PCN (tại thời điểm đó, chúng tôi đã biết độ dài của giải pháp là gì)
  • Xuất phát một số giới hạn thấp dễ tính toán cho SCS, có thể được sử dụng để giúp cắt tỉa
  • Tìm thêm đối xứng hoặc dự phòng trong phân phối số nguyên tố để khai thác

Tuy nhiên, sự kết hợp giữa các nhánh và cắt rất mạnh mẽ, vì vậy chúng tôi có thể không thể đánh bại một người giải quyết hiện đại như Concorde, cho các giá trị lớn N.

Tiền thưởng: các số nguyên tố ngăn chặn chính

Không giống như giải pháp dựa trên Concorde, chương trình này có thể được sửa đổi để tìm các số nguyên tố chứa nhỏ nhất ( OEIS A054260 ). Điều này liên quan đến ba thay đổi:

  1. 1/ln(n)

  2. Sửa đổi mã bộ giải Độ dài SCS để phân loại các giải pháp dựa trên việc tổng các chữ số của chúng có chia hết cho 3. Điều này liên quan đến việc thêm một mục khác, tổng số 3 mod, cho mỗi trạng thái DP. Điều này làm giảm đáng kể tỷ lệ cược của người giải chính bị mắc kẹt với hoán vị không chính. Đây là thay đổi mà tôi không thể tìm ra cách dịch sang TSP. Nó có thể được mã hóa bằng ILP, nhưng sau đó tôi phải tìm hiểu về thứ được gọi là bất đẳng thức phụ cận và cách tạo ra chúng.

  3. Có thể là tất cả các PCN ngắn nhất đều chia hết cho 3. Trong trường hợp đó, số nguyên tố ngăn chặn nhỏ nhất phải dài hơn ít nhất một chữ số so với PCN. Nếu bộ giải Độ dài SCS của chúng tôi phát hiện ra điều này, mã xây dựng lại giải pháp có tùy chọn thêm một chữ số phụ tại bất kỳ điểm nào trong quy trình. Nó cố gắng thêm từng chữ số có thể 0..9và từng mục còn lại vào tiền tố giải pháp hiện tại, theo thứ tự từ điển như trước đây.

Với những thay đổi này, tôi có thể có được các giải pháp lên đến N=62. Ngoại trừ 47, nơi mã tái cấu trúc bị kẹt và bỏ cuộc sau 1 triệu bước (tôi chưa biết tại sao). Các số nguyên tố ngăn chặn chính là:

1 2
2 23
3 523
4 2357
5 112573
6 511327
7 1135217
8 1113251719
9 11171323519
10 113171952923
11 113171952923
12 11131951723729
13 11317237419529
14 1131723294375419
15 113172329541947437
16 1131723294195343747
17 1113172329419434753759
18 11231329417437475361959
19 231132941743475375967619
20 2311294134347175967619537
21 23112941343471735967619537
22 231129413434717359537679619
23 23112941343471735375961983679
24 11231294134347173535961967983789
25 23112941343471735359679837619789
26 2310112941343471735359619783789679
27 231010329411343471735359619678379897
28 101031071132329417343475359619798376789
29 101031071091132329417343475359619767898379
30 101031071091132329417343475359619767898379
31 1010310710911131272329417343475359619678979837
32 1010310710911131272329417343475359619678979837
33 10103107109113127137232941734347535978961967983
34 10103107109113127137139232941734347535961967838979
35 10103107109113127137139149232941734347535961976798389
36 1010310710911312713713914923294151734347535976198389679
37 1010310710911312713713914915157232941734347535967619798389
38 10103107109111312713713914915157163232941734347535967897961983
39 10103107109113127137139149151571631672329417343475961979838953
40 10103107109113127137139149151571631672329417343475961979838953
41 10103107109111312713713914915157163167173232941794347535976198983
42 1010310710911131271371391491515716316717323294179434761819535989783
43 1010310710911131271371391491515716316723294173434753596181917989783
44 101031071091131271371391491515716316717323294179434753836181919389597
45 10103107109113127137139149151571631671731792329418191934347538961975983
46 101031071091113127137139149151571631671731791819193232941974347535989836199
47 (failed)
48 1010310710912713137149151571631671731791819193211392232941974347895359836199
49 10103107109112713137149151571631671731791819193211392232272941974347619983535989
50 10103107109127131371491515716316717317918191932113922322722941974347595389836199
51 101031071091271313714915157163167173179181919321139223322722941974347595389619983
52 101031071091271313714915157163167173179181919321139223322722923941974347538361995989
53 10103107109112713137149151571631671731791819193211392233227229239241974347619983538959
54 101031071091271313714915157163167173179211392233227229239241819193251974347619953835989
55 1010310710911271313714915157163167173179211392233227229239241819193251974325747596199538983
56 101031071091271313714915157163167173179211392233227229239241819193251972572634347619959895383
57 101031071091271313714915157163167173179211392233227229239241819193251972572632694359538983619947
58 101031071091271313714915157163167173179211392233227229239241819193251972572632694359538983619947
59 1010310710912713137149151571631671731792113922332277229239241819193251972572632694347535983896199
60 1010310710911271313714915157163167173211392233227722923924179251819193257263269281974347535961998389
61 1010310710912713137149151571631671732113922332277229239241792518191932572632692819728343538947619959
62 10103107109127131371491515716316717321139223322772293239241792518191932572632692819728343534759896199

Biên dịch với

g++ -std=c++14 -O3 -march=native pcn.cpp -o pcn

Đối với phiên bản số nguyên tố, cũng liên kết với GMPlib, ví dụ:

g++ -std=c++14 -O3 -march=native pcn-prime.cpp -o pcn-prime -lgmp -lgmpxx

Chương trình này sử dụng hướng dẫn PDEP, chỉ có trên các bộ xử lý x86 (Haswell +) gần đây. Cả máy tính và maxb của tôi đều hỗ trợ nó. Nếu không, chương trình sẽ biên dịch thành phiên bản phần mềm chậm. Một cảnh báo biên dịch sẽ được in khi điều này xảy ra.

#include <cassert>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <vector>
#include <unordered_map>
#include <string>
#include <algorithm>
#include <array>

using namespace std;

void debug_dummy(...) {
}

#ifndef INFO
//#  define INFO(...) fprintf(stderr, __VA_ARGS__)
#  define INFO debug_dummy
#endif

#ifndef DEBUG
//#    define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#  define DEBUG debug_dummy
#endif

bool is_prime(size_t n)
{
    for (size_t d = 2; d * d <= n; ++d) {
        if (n % d == 0) {
            return false;
        }
    }
    return true;
}

// bitset, works for up to 64 strings
using bitset_t = uint64_t;
const size_t bitset_bits = 64;

// Find position of n-th set bit of x
uint64_t bit_select(uint64_t x, size_t n) {
#ifdef __BMI2__
    // Bug: GCC doesn't seem to provide the _pdep_u64 intrinsic,
    // despite what its manual claims. Neither does Clang!
    //size_t r = _pdep_u64(ccontext_t(1) << new_context, ccontext1);
    size_t r;
    // NB: actual operand order is %2, %1 despite the intrinsic taking %1, %2
    asm ("pdep %2, %1, %0"
         : "=r" (r)
         : "r" (uint64_t(1) << n), "r" (x)
         );
    return __builtin_ctzll(r);
#else
#  warning "bit_select: no x86 BMI2 instruction set, falling back to slow code"
    size_t k = 0, m = 0;
    for (; m < 64; ++m) {
        if (x & (uint64_t(1) << m)) {
            if (k == n) {
                break;
            }
            ++k;
        }
    }
    return m;
#endif
}

#ifndef likely
#  define likely(x) __builtin_expect(x, 1)
#endif
#ifndef unlikely
#  define unlikely(x) __builtin_expect(x, 0)
#endif

// Return the shortest string that begins with a and ends with b
string join_strings(string a, string b) {
    for (size_t overlap = min(a.size(), b.size()); overlap > 0; --overlap) {
        if (a.substr(a.size() - overlap) == b.substr(0, overlap)) {
            return a + b.substr(overlap);
        }
    }
    return a + b;
}

vector <string> dedup_items(string context0, vector <string> items)
{
    vector <string> items2;
    for (size_t i = 0; i < items.size(); ++i) {
        bool dup = false;
        if (context0.find(items[i]) != string::npos) {
                dup = true;
        } else {
            for (size_t j = 0; j < items.size(); ++j) {
                if (items[i] == items[j]?
                    i > j
                        : items[j].find(items[i]) != string::npos) {
                    dup = true;
                    break;
                }
            }
        }
        if (!dup) {
            items2.push_back(items[i]);
        }
    }
    return items2;
}

// Table entry used in main solver
const size_t solver_max_item_set = bitset_bits - 8;
struct Solver_entry
{
    uint8_t score : 8;
    bitset_t items : solver_max_item_set;
    bitset_t context;

    Solver_entry()
    {
        score = 0xff;
        items = 0;
        context = 0;
    }
    bool is_empty() const {
        return score == 0xff;
    }
};

// Simple hash table to avoid stdlib overhead
struct Solver_table
{
    vector <Solver_entry> t;
    size_t t_bits;
    size_t size_;
    size_t num_probes_;

    Solver_table()
    {
        // 256 slots initially -- this needs to be not too small
        // so that the load factor formula in update_score works
        t_bits = 8;
        size_ = 0;
        num_probes_ = 0;
        resize(t_bits);
    }
    static size_t entry_hash(bitset_t items, bitset_t context)
    {
        uint64_t h = 0x3141592627182818ULL;
        // Add context first, since its bits are generally
        // less well distributed than items
        h += context;
        h ^= h >> 23;
        h *= 0x2127599bf4325c37ULL;
        h ^= h >> 47;
        h += items;
        h ^= h >> 23;
        h *= 0x2127599bf4325c37ULL;
        h ^= h >> 47;
        return h;
    }
    size_t probe_index(size_t hash) const {
        return hash & ((size_t(1) << t_bits) - 1);
    }
    void resize(size_t t2_bits)
    {
        assert (size_ < size_t(1) << t2_bits);
        vector <Solver_entry> t2(size_t(1) << t2_bits);
        for (auto entry: t) {
            if (!entry.is_empty()) {
                size_t h = entry_hash(entry.items, entry.context);
                size_t mask = (size_t(1) << t2_bits) - 1;
                size_t idx = h & mask;
                while (!t2[idx].is_empty()) {
                    idx = (idx + 1) & mask;
                    ++num_probes_;
                }
                t2[idx] = entry;
            }
        }
        t.swap(t2);
        t_bits = t2_bits;
    }
    uint8_t update_score(bitset_t items, bitset_t context, uint8_t score)
    {
        // Ensure we can insert a new item without resizing
        assert (size_ < t.size());

        size_t index = probe_index(entry_hash(items, context));
        size_t mask = (size_t(1) << t_bits) - 1;
        for (size_t p = 0; p < t.size(); ++p, index = (index + 1) & mask) {
            ++num_probes_;
            if (likely(t[index].items == items && t[index].context == context)) {
                t[index].score = max(t[index].score, score);
                return t[index].score;
            }
            if (t[index].is_empty()) {
                // add entry
                t[index].score = score;
                t[index].items = items;
                t[index].context = context;
                ++size_;
                // load factor 4/5 -- ideally 2-3 average probes per lookup
                if (5*size_ > 4*t.size()) {
                    resize(t_bits + 1);
                }
                return score;
            }
        }
        assert (false && "bug: hash table probe loop");
    }
    size_t size() const {
        return size_;
    }
    void swap(Solver_table table)
    {
        t.swap(table.t);
        ::swap(size_, table.size_);
        ::swap(t_bits, table.t_bits);
        ::swap(num_probes_, table.num_probes_);
    }
};

/*
 * Main solver code.
 */
struct Solver
{
    // Inputs
    vector <string> items;
    string context0;
    size_t context0_index;

    // Mapping between strings and indices
    vector <string> context_to_string;
    unordered_map <string, size_t> string_to_context;

    // Items that have context-free prefixes, i.e. prefixes that
    // never overlap with the end of other items nor context0
    vector <bool> contextfree;

    // Precomputed contexts (suffixes) for each item
    vector <size_t> item_context;
    // Precomputed updates: (context, string) to overlap amount
    vector <vector <size_t>> join_overlap;

    Solver(vector <string> items, string context0)
        :items(items), context0(context0)
    {
        items = dedup_items(context0, items);
        init_context_();
    }

    void init_context_()
    {
        /*
         * Generate all relevant item-item contexts.
         *
         * At this point, we know that no item is a substring of
         * another, nor of context0. This means that the only contexts
         * we need to care about, are those generated from maximal join
         * overlaps between any two items.
         *
         * Proof:
         * Suppose that the shortest containing string needs some other
         * kind of context. Maybe it depends on a context spanning
         * three or more items, say X,Y,Z. But if Z ends after Y and
         * interacts with X, then Y must be a substring of Z.
         * This cannot happen, because we removed all substrings.
         *
         * Alternatively, it depends on a non-maximal join overlap
         * between two strings, say X,Y. But if this overlap does not
         * interact with any other string, then we could maximise it
         * and get a shorter solution. If it does, then call this
         * other string Z. We would get the same contradiction as in
         * the previous case with X,Y,Z.
         */
        size_t N = items.size();
        vector <size_t> max_prefix_overlap(N), max_suffix_overlap(N);
        size_t context0_suffix_overlap = 0;
        for (size_t i = 0; i < N; ++i) {
            for (size_t j = 0; j < N; ++j) {
                if (i == j) continue;
                string joined = join_strings(items[j], items[i]);
                size_t overlap = items[j].size() + items[i].size() - joined.size();
                string context = items[i].substr(0, overlap);
                max_prefix_overlap[i] = max(max_prefix_overlap[i], overlap);
                max_suffix_overlap[j] = max(max_suffix_overlap[j], overlap);

                if (string_to_context.find(context) == string_to_context.end()) {
                    string_to_context[context] = context_to_string.size();
                    context_to_string.push_back(context);
                }
            }

            // Context for initial join with context0
            {
                string joined = join_strings(context0, items[i]);
                size_t overlap = context0.size() + items[i].size() - joined.size();
                string context = items[i].substr(0, overlap);
                max_prefix_overlap[i] = max(max_prefix_overlap[i], overlap);
                context0_suffix_overlap = max(context0_suffix_overlap, overlap);

                if (string_to_context.find(context) == string_to_context.end()) {
                    string_to_context[context] = context_to_string.size();
                    context_to_string.push_back(context);
                }
            }
        }
        // Now compute all canonical trailing contexts
        context0_index = string_to_context[
                           context0.substr(context0.size() - context0_suffix_overlap)];
        item_context.resize(N);
        for (size_t i = 0; i < N; ++i) {
            item_context[i] = string_to_context[
                                items[i].substr(items[i].size() - max_suffix_overlap[i])];
        }

        // Now detect context-free items
        contextfree.resize(N);
        for (size_t i = 0; i < N; ++i) {
            contextfree[i] = (max_prefix_overlap[i] == 0);
            if (contextfree[i]) {
                DEBUG("  contextfree: %s\n", items[i].c_str());
            }
        }

        // Now compute all possible overlap amounts
        join_overlap.resize(context_to_string.size(), vector <size_t> (N));
        for (size_t c_index = 0; c_index < context_to_string.size(); ++c_index) {
            const string& context = context_to_string[c_index];
            for (size_t i = 0; i < N; ++i) {
                string joined = join_strings(context, items[i]);
                size_t overlap = context.size() + items[i].size() - joined.size();
                join_overlap[c_index][i] = overlap;
            }
        }
    }

    // Main solver.
    // Returns length of shortest string containing all items starting
    // from context0 (context0's length not included).
    size_t solve() const
    {
        size_t N = items.size();

        // Length, if joined without overlaps. We try to improve this by
        // finding overlaps in the main iteration
        size_t base_length = 0;
        for (auto s: items) {
            base_length += s.size();
        }

        // Now take non-context-free items. We will only need to search
        // over these items.
        vector <size_t> search_items;
        for (size_t i = 0; i < N; ++i) {
            if (!contextfree[i]) {
                search_items.push_back(i);
            }
        }
        size_t N_search = search_items.size();

        /*
         * Some groups of strings have the same context transitions.
         * For example "17", "107", "127", "167" all have an initial
         * context of "1" and a trailing context of "7", no other
         * overlaps are possible with other primes.
         *
         * We group these strings and treat them as indistinguishable
         * during the main algorithm.
         */
        auto eq_context = [&](size_t i, size_t j) {
            if (item_context[i] != item_context[j]) {
                return false;
            }
            for (size_t ci = 0; ci < context_to_string.size(); ++ci) {
                if (join_overlap[ci][i] != join_overlap[ci][j]) {
                    return false;
                }
            }
            return true;
        };
        vector <size_t> eq_context_group(N_search, size_t(-1));
        for (size_t si = 0; si < N_search; ++si) {
            for (size_t sj = si-1; sj+1 > 0; --sj) {
                size_t i = search_items[si], j = search_items[sj];
                if (!contextfree[j] && eq_context(i, j)) {
                    DEBUG("  eq context: %s =c= %s\n", items[i].c_str(), items[j].c_str());
                    eq_context_group[si] = sj;
                    break;
                }
            }
        }

        // Figure out the combined context size. A combined context has
        // one entry for each context-free item plus one for context0.
        size_t ccontext_size = N - N_search + 1;

        // Assert that various parameters all fit into our data types
        using ccontext_t = bitset_t;
        assert (context_to_string.size() + ccontext_size <= bitset_bits);
        assert (N_search <= solver_max_item_set);
        assert (base_length < 0xff);

        // Initial combined context.
        unordered_map <size_t, size_t> cc0_full;
        ++cc0_full[context0_index];
        for (size_t i = 0; i < N; ++i) {
            if (contextfree[i]) {
                ++cc0_full[item_context[i]];
            }
        }
        // Now pack into unary-encoded bitset. The bitset stores the
        // count for each context as <count> number of 0 bits,
        // followed by a 1 bit.
        ccontext_t cc0 = 0;
        for (size_t ci = 0, b = 0; ci < context_to_string.size(); ++ci, ++b) {
            b += cc0_full[ci];
            cc0 |= ccontext_t(1) << b;
        }

        // Map from (item set, context) to maximum achievable overlap
        Solver_table k_solns;
        // Base case: cc0 with empty set
        k_solns.update_score(0, cc0, 0);

        // Now start dynamic programming. k is current subset size
        size_t eq_context_groups = 0;
        for (size_t g: eq_context_group) eq_context_groups += (g != size_t(-1));
        if (context0.empty()) {
            INFO("solve: N=%zu, N_search=%zu, ccontext_size=%zu, #contexts=%zu, #eq_context_groups=%zu\n",
                 N, N_search, ccontext_size, context_to_string.size(), eq_context_groups);
        } else {
            DEBUG("solve: context=%s, N=%zu, N_search=%zu, ccontext_size=%zu, #contexts=%zu, #eq_context_groups=%zu\n",
                  context0.c_str(), N, N_search, ccontext_size, context_to_string.size(), eq_context_groups);
        }
        for (size_t k = 0; k < N_search; ++k) {
            decltype(k_solns) k1_solns;

            // The main bottleneck of this program is updating k1_solns,
            // which (for larger N) becomes a huge table.
            // We use a prefetch queue to reduce memory latency.
            const size_t prefetch = 8;
            array <Solver_entry, prefetch> entry_queue;
            size_t update_i = 0;

            // Iterate every k-subset
            for (Solver_entry entry: k_solns.t) {
                if (entry.is_empty()) continue;

                bitset_t s = entry.items;
                ccontext_t ccontext = entry.context;
                size_t overlap = entry.score;

                // Try adding a new item
                for (size_t si = 0; si < N_search; ++si) {
                    bitset_t s1 = s | bitset_t(1) << si;
                    if (s == s1) {
                        continue;
                    }
                    // Add items in each eq_context_group sequentially
                    if (eq_context_group[si] != size_t(-1) &&
                        !(s & bitset_t(1) << eq_context_group[si])) {
                        continue;
                    }
                    size_t i = search_items[si]; // actual item index

                    size_t new_context = item_context[i];
                    // Increment ccontext's count for new_context.
                    // We need to find its delimiter 1 bit
                    size_t bit_n = bit_select(ccontext, new_context);
                    ccontext_t ccontext_n =
                        ((ccontext & ((ccontext_t(1) << bit_n) - 1))
                         | ((ccontext >> bit_n << (bit_n + 1))));

                    // Select non-empty sub-contexts to substitute for new_context
                    for (size_t ci = 0, bit1 = 0, count;
                         ci < context_to_string.size();
                         ++ci, bit1 += count + 1)
                    {
                        assert (ccontext_n >> bit1);
                        count = __builtin_ctzll(ccontext_n >> bit1);
                        if (!count
                            // We just added new_context; we can only remove an existing
                            // context entry there i.e. there must be at least two now
                            || (ci == new_context && count < 2)) {
                            continue;
                        }

                        // Decrement ci in ccontext_n
                        bitset_t ccontext1 =
                            ((ccontext_n & ((ccontext_t(1) << bit1) - 1))
                             | ((ccontext_n >> (bit1 + 1)) << bit1));

                        size_t overlap1 = overlap + join_overlap[ci][i];

                        // do previous prefetched update
                        if (update_i >= prefetch) {
                            Solver_entry entry = entry_queue[update_i % prefetch];
                            k1_solns.update_score(entry.items, entry.context, entry.score);
                        }

                        // queue the current update and prefetch
                        Solver_entry entry1;
                        size_t probe_index = k1_solns.probe_index(Solver_table::entry_hash(s1, ccontext1));
                        __builtin_prefetch(&k1_solns.t[probe_index]);
                        entry1.items = s1;
                        entry1.context = ccontext1;
                        entry1.score = overlap1;
                        entry_queue[update_i % prefetch] = entry1;

                        ++update_i;
                    }
                }
            }

            // do remaining queued updates
            for (size_t j = 0; j < min(update_i, prefetch); ++j) {
                Solver_entry entry = entry_queue[j];
                k1_solns.update_score(entry.items, entry.context, entry.score);
            }

            if (context0.empty()) {
                INFO("  hash stats: |solns[%zu]| = %zu, %zu lookups, %zu probes\n",
                     k+1, k1_solns.size(), update_i, k1_solns.num_probes_);
            } else {
                DEBUG("  hash stats: |solns[%zu]| = %zu, %zu lookups, %zu probes\n",
                      k+1, k1_solns.size(), update_i, k1_solns.num_probes_);
            }
            k_solns.swap(k1_solns);
        }

        // Overall solution
        size_t max_overlap = 0;
        for (Solver_entry entry: k_solns.t) {
            if (entry.is_empty()) continue;
            max_overlap = max(max_overlap, size_t(entry.score));
        }
        return base_length - max_overlap;
    }
};

// Wrapper for Solver that also finds the smallest solution string
string smallest_containing_string(vector <string> items)
{
    items = dedup_items("", items);

    size_t soln_length;
    {
        Solver solver(items, "");
        soln_length = solver.solve();
    }
    DEBUG("Found solution length: %zu\n", soln_length);

    string soln;
    vector <string> remaining_items = items;
    while (remaining_items.size() > 1) {
        // Add all possible next items, in lexicographic order
        vector <pair <string, size_t>> next_solns;
        for (size_t i = 0; i < remaining_items.size(); ++i) {
            const string& item = remaining_items[i];
            next_solns.push_back(make_pair(join_strings(soln, item), i));
        }
        assert (next_solns.size() == remaining_items.size());
        sort(next_solns.begin(), next_solns.end());

        // Now try every item in order
        bool found_next = false;
        for (auto ns: next_solns) {
            size_t i;
            string next_soln;
            tie(next_soln, i) = ns;
            DEBUG("Trying: %s + %s -> %s\n",
                  soln.c_str(), remaining_items[i].c_str(), next_soln.c_str());
            vector <string> next_remaining;
            for (size_t j = 0; j < remaining_items.size(); ++j) {
                if (next_soln.find(remaining_items[j]) == string::npos) {
                    next_remaining.push_back(remaining_items[j]);
                }
            }

            Solver solver(next_remaining, next_soln);
            size_t next_size = solver.solve();
            DEBUG("  ... next_size: %zu + %zu =?= %zu\n", next_size, next_soln.size(), soln_length);
            if (next_size + next_soln.size() == soln_length) {
                INFO("  found next item: %s\n", remaining_items[i].c_str());
                soln = next_soln;
                remaining_items = next_remaining;
                // found lexicographically smallest solution, break now
                found_next = true;
                break;
            }
        }
        assert (found_next);
    }
    soln = join_strings(soln, remaining_items[0]);

    return soln;
}

int main()
{
    string prev_soln;
    vector <string> items;
    size_t p = 1;
    for (size_t N = 1;; ++N) {
        for (++p; items.size() < N; ++p) {
            if (is_prime(p)) {
                char buf[99];
                snprintf(buf, sizeof buf, "%zu", p);
                items.push_back(buf);
                break;
            }
        }

        // Try to reuse previous solution (this works for N=11,30,32...)
        string soln;
        if (prev_soln.find(items.back()) != string::npos) {
            soln = prev_soln;
        } else {
            soln = smallest_containing_string(items);
        }
        printf("%s\n", soln.c_str());
        prev_soln = soln;
    }
}

Hãy thử trực tuyến!

phiên bản duy nhất trên TIO . Xin lỗi, nhưng tôi đã không chơi các chương trình này và có giới hạn độ dài bài.


Không liên quan: Thay vì debug_dummy, bạn có thể sử dụng #define DEBUG(x) void(0).
dùng202729

Kinh ngạc! Tôi đã hy vọng cho một câu trả lời C / C ++. Tôi sẽ thử chạy nó càng sớm càng tốt! Bạn có bao nhiêu RAM trên máy? Tôi sẽ cố gắng tối đa hóa số tiền có sẵn cho tập lệnh của bạn khi tôi đánh giá đúng.
maxb

người dùng: tôi sử dụng debug_dummy vì tôi muốn các đối số được kiểm tra và đánh giá ngay cả khi tắt gỡ lỗi.
japh

@maxb: cũng 16GB. Nhưng tôi N=32chỉ cần khoảng 500MB.
japh

1
Cải tiến tuyệt vời! Tôi sẽ chạy nó sau ngày hôm nay. Mã bạn đã dán ở trên không bao gồmmain , nhưng tôi đã tìm thấy nó từ liên kết TIO.
maxb

13

JavaScript (Node.js) , điểm 24 trong 241 giây

Các kết quả

  • một(1)một(21)
  • một(22)= =231129413434717353759619679
  • một(23)= =23112941343471735359619678379
  • một(1)một(24)

Thuật toán

Đây là một tìm kiếm đệ quy thử tất cả các cách có thể để hợp nhất các số với nhau và cuối cùng sắp xếp các danh sách kết quả theo thứ tự từ điển khi đạt đến một nút lá.

xykxkykykx

Ở đầu mỗi lần lặp, bất kỳ mục nào có thể tìm thấy trong mục khác sẽ bị xóa khỏi danh sách.

Một sự tăng tốc đáng kể đã đạt được bằng cách theo dõi các nút được truy cập, để chúng ta có thể hủy bỏ sớm khi các hoạt động khác nhau dẫn đến cùng một danh sách.

Một sự tăng tốc nhỏ đã đạt được bằng cách cập nhật và khôi phục danh sách khi có thể thay vì tạo một bản sao, như được đề xuất bởi một người dùng ẩn danh Neil.

Thí dụ

n= =7[2,3,5,7,11,13,17].

[]                        // start with an empty list
[ 2 ]                     // append 2
[ 2, 3 ]                  // append 3
[ 2, 3, 5 ]               // append 5
[ 2, 3, 5, 7 ]            // append 7
[ 2, 3, 5, 7, 11 ]        // append 11
[ 2, 3, 5, 7, 11, 13 ]    // append 13
[ 2, 5, 7, 11, 13 ]       // remove 3, which appears in 13
  [ 2, 5, 7, 113, 13 ]    //   try to merge 11 and 13 into 113
  [ 2, 5, 7, 113 ]        //   remove 13, which now appears in 113
  [ 2, 5, 7, 113, 17 ]    //   append 17
  [ 2, 5, 113, 17 ]       //   remove 7, which appears in 17
  --> leaf node: 1131725  //   new best result
[ 2, 5, 7, 11, 13, 17 ]   // append 17
[ 2, 5, 11, 13, 17 ]      // remove 7, which appears in 17
  [ 2, 5, 113, 13, 17 ]   //   try to merge 11 and 13 into 113
  [ 2, 5, 113, 17 ]       //   remove 13, which now appears in 113
                          //   abort because this node was already visited
                          //   (it was a leaf node anyway, so we don't save much here)
  [ 2, 5, 117, 13, 17 ]   //   try to merge 11 and 17 into 117
  [ 2, 5, 117, 13 ]       //   remove 17, which now appears in 117
  --> leaf node: 1171325  //   not better than the previous one
--> leaf node: 11131725   // not better than the previous one

Hãy thử trực tuyến!

let f = n => {
  let visited = {},
      a, d, k, best, search;

  // build the list of primes, as strings
  for(a = [ '2' ], n--, k = 3; n; k++) {
    for(d = k; k % (d -= 2);) {}
    d == 1 && n-- && a.push(k + '');
  }

  best = a.join('');

  // recursive search function
  (search = (a, n = 0, r = []) => {
    let x, y, i, j, k, s;

    // remove all entries in r[] that can be found in another entry
    r = r.filter((p, i) => !r.some((q, j) => i != j && ~q.indexOf(p)));

    // abort early if this node was already visited
    if(visited[r]) {
      return;
    }

    // otherwise, mark it as visited
    visited[r] = 1;

    // walk through all distinct pairs (x, y) in r[]
    for(i = 0; i < r.length; i++) {
      for(j = i + 1; j < r.length; j++) {
        x = r[i];
        y = r[j];

        // try to merge x and y if:
        // 1) the first k digits of x equal the last k digits of y
        for(k = 1; x.slice(0, k) == y.slice(-k); k++) {
          r[i] = y + x.slice(k);
          search(a, n, r);
        }

        // or:
        // 2) the first k digits of y equal the last k digits of x
        for(k = 1; y.slice(0, k) == x.slice(-k); k++) {
          r[i] = x + y.slice(k);
          search(a, n, r);
        }
        r[i] = x;
      }
    }

    if(x = a[n]) {
      // there are other primes to process, so go on with the next one
      search(a, n + 1, [...r, x]);
    }
    else {
      // this is a leaf node: see if we've improved our current score
      s = r.join('');

      if(s.length <= best.length) {
        s = r.sort().join('');

        if(s.length < best.length || s < best) {
          best = s;
        }
      }
    }
  })(a);

  return best;
}

2
Tìm việc tốt đẹp (18).
ngerak

Câu trả lời chính xác! Tôi không phải là một chuyên gia về JavaScript, nhưng thuật toán dường như nằm dọc theo những gì được liên kết bởi Kevin Cruijssen. Giải thích hay về thuật toán, thật dễ dàng để thấy rằng bạn sẽ tìm thấy giá trị tối thiểu. Cá nhân tôi đã không thực hiện đo điểm chuẩn trong JS, tôi có thể chạy nó trong trình duyệt của mình không hoặc có cách nào khác được thực hiện không?
maxb

@maxb Tôi không khuyên bạn nên chạy cái này trong trình duyệt, vì nó sẽ đóng băng nó. Nó dự định được chạy với Node.js (giống như trên TIO).
Arnauld

10

Người giải TSP của Concorde , đạt 84 điểm sau 299 giây

Vâng, tôi cảm thấy ngớ ngẩn khi chỉ nhận ra điều này bây giờ.

Toàn bộ điều này về cơ bản là một vấn đề nhân viên bán hàng du lịch . Đối với mỗi cặp số nguyên tố pq, thêm một cạnh có trọng số là số chữ số được thêm vào bằng cách q(loại bỏ các chữ số chồng chéo). Ngoài ra, thêm một cạnh ban đầu cho mỗi số nguyên tố p, có trọng lượng là chiều dài p. Con đường nhân viên bán hàng du lịch ngắn nhất phù hợp với độ dài của số ngăn chính nhỏ nhất.

Sau đó, một bộ giải TSP cấp công nghiệp, chẳng hạn như Concorde , sẽ giải quyết vấn đề ngắn này.

Mục này có lẽ nên được coi là không cạnh tranh.

Các kết quả

Bộ giải đạt được N=350trong khoảng 20 giờ CPU. Các kết quả đầy đủ quá dài cho một bài đăng SE và OEIS không muốn có nhiều điều khoản. Dưới đây là 200 đầu tiên:

1 2
2 23
3 235
4 2357
5 112357
6 113257
7 1131725
8 113171925
9 1131719235
10 113171923295
11 113171923295
12 1131719237295
13 11317237294195
14 1131723294194375
15 113172329419437475
16 1131723294194347537
17 113172329419434753759
18 2311329417434753759619
19 231132941743475375961967
20 2311294134347175375961967
21 23112941343471735375961967
22 231129413434717353759619679
23 23112941343471735359619678379
24 2311294134347173535961967837989
25 23112941343471735359619678378979
26 2310112941343471735359619678378979
27 231010329411343471735359619678378979
28 101031071132329417343475359619678378979
29 101031071091132329417343475359619678378979
30 101031071091132329417343475359619678378979
31 101031071091131272329417343475359619678378979
32 101031071091131272329417343475359619678378979
33 10103107109113127137232941734347535961967838979
34 10103107109113127137139232941734347535961967838979
35 10103107109113127137139149232941734347535961967838979
36 1010310710911312713713914923294151734347535961967838979
37 1010310710911312713713914915157232941734347535961967838979
38 1010310710911312713713914915157163232941734347535961967838979
39 10103107109113127137139149151571631672329417343475359619798389
40 10103107109113127137139149151571631672329417343475359619798389
41 1010310710911312713713914915157163167173232941794347535961978389
42 101031071091131271371391491515716316717323294179434753596181978389
43 101031071091131271371391491515716316723294173434753596181917978389
44 101031071091131271371391491515716316717323294179434753596181919383897
45 10103107109113127137139149151571631671731792329418191934347535961978389
46 10103107109113127137139149151571631671731791819193232941974347535961998389
47 101031071091271313714915157163167173179181919321139232941974347535961998389
48 1010310710912713137149151571631671731791819193211392232941974347535961998389
49 1010310710912713137149151571631671731791819193211392232272941974347535961998389
50 10103107109127131371491515716316717317918191932113922322722941974347535961998389
51 101031071091271313714915157163167173179181919321139223322722941974347535961998389
52 101031071091271313714915157163167173179181919321139223322722923941974347535961998389
53 1010310710912713137149151571631671731791819193211392233227229239241974347535961998389
54 101031071091271313714915157163167173179211392233227229239241819193251974347535961998389
55 101031071091271313714915157163167173179211392233227229239241819193251972574347535961998389
56 101031071091271313714915157163167173179211392233227229239241819193251972572634347535961998389
57 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
58 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
59 1010310710912713137149151571631671731792113922332277229239241819193251972572632694347535961998389
60 101031071091271313714915157163167173211392233227722923924179251819193257263269281974347535961998389
61 1010310710912713137149151571631671732113922332277229239241792518191932572632692819728343475359619989
62 10103107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
63 1010307107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
64 10103071071091271311371391491515716316721173223322772293239241792518191932572632692819728343475359619989
65 10103071071091271311371491515716313916721173223322772293239241792518191932572632692819728343475359619989
66 10103071071091271311371491515716313921167223317322772293239241792518191932572632692819728343475359619989
67 10103071071091271311371491515716313921167223317322772293239241792518191932572632692819728343475359619989
68 1010307107109127131137149151571631392116722331732277229323924179251819193257263269281972833743475359619989
69 1010307107109127131137149151571631392116722331732277229323924179251819193257263269281972833743475359619989
70 101030710710912713113714915157163139211672233173227722932392417925181919325726326928197283374347534959619989
71 101030710710912713113714915157163139211672233173227722932392417925181919325726337269281972834743534959619989
72 101030710710912713113714915157163139211672233173227722932392417925181919337257263472692819728349435359619989
73 10103071071091271311371491515716313921167223317322772293372392417925181919347257263492692819728353594367619989
74 101030710710912713113714915157163139211672233173227722932392417925181919337347257263492692819728353594367619989
75 1010307107109127131137313914915157163211672233173227722933792392417925181919347257263492692819728353594367619989
76 101030710710912713113731391491515716321167223317322772293379239241792518191934725726349269281972835359438367619989
77 101030710710912713113731391491515716321167223317337922772293472392417925181919349257263535926928197283674383896199
78 1010307107109127131137313914915157163211672233173379227722934723972417925181919349257263535926928197283674383896199
79 101030710710912713113731391491515721163223317337922772293472397241672517925726349269281819193535928367401974383896199
80 101030710710912713113731391491515721163223317337922772293472397241672517925726349269281819193535928367401974094383896199
81 101030710710912713113731391491515721163223317337922772293472397241916725179257263492692818193535928367401974094383896199
82 1010307107109127131137313914915157223317322772293379239724191634725167257263492692817928353594018193674094211974383896199
83 1010307107109127131137313914922331515722772293379239724191634725167257263492692817353592836740181938389409421197431796199
84 101030710710912713113731391492233151572277229323972419163472516725726349269281735359283674018193838940942119743179433796199
85 101030710710912713113731391492233151572277229323924191634725167257263492692817353592836740181938389409421197431794337943976199
86 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443976199
87 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443974496199
88 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443974494576199
89 10103071071091271311373139149223315157227722932392419163472516725726349269281735359283674018193838940942119743179433794439744945746199
90 10103071071091271311373139149223315157227722932392419163251672572634726928173492835359401819367409421197431794337944397449457461994638389
91 10103071071091271311373139149223315157227722932392419163251672572634726928173492835359401819367409421197431794337944397449457461994638389467
92 101030710710912713113731391492233151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467
93 101030710710912713113731391492233151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467487
94 101030710710912713113731392233149151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467487
95 1010307107109127131137313922331491515722772293239241916325167257263479269281734928353594018193674094211974317943379443974499457461994638389467487
96 1010307107109127131137313922331491515722772293239241916325167257263269281734792834940181935359409421197431794337944397449945746199463674674875038389
97 1010307107109127131137313922331491515722772293239241916325167257263269281734792834940181935359409421197431794337944397449945746199463674674875038389509
98 101030710710912713113732233139227722932392419149151572516325726326928167283479401734940942118193535943179433794439744994574619746367467487503838950952199
99 1010307107109127131137322331392277229324191491515725163257263269281672834794017349409421181935359431794337944394499457461974636746748750383895095219952397
100 101030710710922331127131373227722932414915157251632572632692816728347940173494094211394317943379443944994574618191935359463674674875038389509521975239754199
101 101030710710922331127131373227722932414915157251632572632692816728347401734940942113943179433794439449945746181919353594636746748750383895095219752397541995479
102 101030710710922331127131373227722932414915157251632572632692816728347401734940942113943179433794439449945746181919353594636746748750383895095219752397541995479557
103 101030710710922331127131373227722932414915157251632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389
104 101030710710922331127131373227722932414915157251632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389569
105 101030710722331109227127722932413137325149151571632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389569
106 1010307107223311092271277229324131373251491515716325726326928167283401734740942113943179433794439449457461819193499463535946748750367509521975239754199547955775638389569
107 1010307107223311092271277229324131373251491515716325726326928167283401734740942113943179433794439449457461819193499463535946748750367509521975239754199547955775638389569587
108 10103071072233110922712772293241313732514915157163257263269281672834017340942113943179433794439449457461819193474634994674875035359367509521975239754199547955775638389569587
109 10103071072233110922712772293241313732514915157163257263269281672834017340942113943179433794439449457461819193474634994674875035359367509521975239754199547955775638389569587599
110 1010307223311072271092293241277251313732571491515726326928163283401674094211394317343379443944945746179463474674875034995095218191935359367523975419754795577563838956958759960199
111 1010307223311072271092293241277251313732571491515726326928163283401674094211394317343379443944945746179463474674875034995095218191935359367523975419754795577563838956958759960199607
112 1010307223311072271092293241277251491515716325726326928167283401734094211313734317943379443944945746139463474674875034995095218191935359367523975419754795577563838956958759960199607
113 22331101030722710722932410925127725714915157263269281632834016740942113137343173433794439449457461394634746748750349950952181919353593675239754197547955775638389569587599601996076179
114 2233110103072271072293241092512571277263269281491515728340163409421131373431734337944394494574613946347467487503499509521675239754191819353593675479557756383895695875996019760761796199
115 22331010307227107229324109251257126311277269281491515728340163409421131373431734337944394494574613946347467487503499509521675239754191819353593675479557756383895695875996019760761796199
116 22331010307227107229324109251257126311269281277283401491515740942113137343173433794439449457461394634674875034750952163499523975416754795577563535936756958759960181919383896076179619764199
117 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675479557756353593675695875996018191938389607617961976419964397
118 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675475577563535936756958759960181919383896076179619764199643976479
119 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675475577563535695875935996018191936760761796197641996439764796538389
120 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467487503475095216349952395416754755775635356958760181919359367607617961976419964397647965383896599
121 22331010307227107229324109251257126311269281277283401491515740942113137343173443379449457461394634674875034750952163499523954167547557756353569587601819193593676076179641976439764796538389659966199
122 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346734748750349950952163523954167547557756353569587601819193593676076179641976439764796538389659966199
123 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936776076179641976439764796538389659966199
124 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
125 22331010307227107229324109251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
126 2233101030701072271092293241251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
127 223310103070107092271092293241251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
128 223310103070107092271092293241251257191263112691277281283401491515740942113137343173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
129 22331010307010709227109229324125125719126311269127277281283401491515740942113137343173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
130 223307010103227092293241072510925712631126912719128128340140942113137331491515727743173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
131 2233070101032270922932410725109257126311269127191281283401409421131373314915157277431734433794494574613946346739487503475095216349952395416754755775635356958760181935936076179641976439764796536776599661996838389
132 2233070101032270922932410725109257126311269127191281283401409421131373314915157277431734433794494574613946346739487503475095216349952395416754755775635356958760181935936076179641976439764796536776599661996838389
133 223307010103227092293241072510925712631126912719128128340140942113137331443173449149457277433794613946346739487503475095215157516349952395416754755775635356958760181935936076179641976439764796536776599661996838389
134 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727743379461394634673948750347509521515751634995239541675475575635356958757760181935936076179641976439764796536776599661996838389
135 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727743379461394634673948750347509521515751634995239541675475575635356958757760181935936076179641976439764796536776599661996838389
136 2233070101032270922932410725109257126311269127191281283401409421131373314431734491494572774337946139463467394875034750952151575163499523954167547557563535695875776018193593607617964197643976479653677696599661996838389
137 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479653677696599661996838389
138 2233070101032270922932410725109257126311269127191281283401409421131373314431734491494572773461394634673948743379503475095215157516349952395416754755756353569587577601819359360761796419764397647965367787696599661996838389
139 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389
140 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389809
141 223307010103227092293241072510925712631126912719128112834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389809
142 223307010103227092293241072510925712631126912719128112834014094211313733144317344914572773461394634673948743379503475095214952395415157516349954755756353569587577601676076179641935936439764797653677659966197876968383898098218199
143 223070101032270922932410725109257126311269127191281128340140942113137331443173449145727734613946346739487433475034950952149952337954151575163535475575635695875776016760761796419359364396479765367765996619768383898098218199823978769
144 223070101032270922932410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151575163535475575635695875773960167607617964193593643964797653677659966197683838980982181998239769827787
145 223070101032270922924107251092571263112691271912811283401409421131373314431734491457274334613946346734748750349509521499523379541515751635354755756356958757739601676076179641935936439647976536599661976836776980982181998239782778782938389
146 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587577396016760761796419359364396479765367765996619768383976980982181998239827787829389
147 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587577396016760761796419359364396479765365996619768367769809821819982397827787829383985389
148 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365996619768367739769809821819982398277829383985389857787
149 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365966197683677397698098218199823982778293839853898577878599
150 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365966197683677397698098218199823982778293839853857787859986389
151 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151575163535475575635695875760167607617964193593643964797653659661976836773976980982181998239827782938398538577877859986389
152 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383985385778778599863898818199
153 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857787785998638988181998839
154 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
155 2230701010322709072292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
156 22307010103227090722924107251092571263112691127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
157 22307010103227090722924107251092571263112691127191281128340140942113137331443173449193457274334613946346734748750349509521499523379541515475155756353569587576015760761796419764396479765359365966199683676980982163823978277398293838538577859986389881816778778839887
158 2230701010322709072292410725109257126311269112719128112834014092934211313733144317344919345727433461394634673474875034950952149952337954151547515575635356958757601576076179641976439647976535936596619968367698098216382397827739829853838577859986389881816778778839887
159 22307010103227090722924107251092571263112691127191281128340140929342113137274314433173344919345746139463467347487503495095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
160 2230701010322709072292410725109257126311269112719128112834014092934211313727431443317334491934574613941463467347487503495095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
161 223070101032270907229241072510925712631126911271912811283401409293421131372743144331733449193457461394146346734748750349475095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
162 22307010103227090722924107251092571263112691127191281128340140929342113137274314433173344919345746139414634673474875034947509521499523373535415154751557563569535875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
163 2230701010322709072292410725109257126311269112719128112834014092934211313727431443317334491934574613941463467347487503494750952149952337353541515475155756356953587576015760761796419764396479653593797659661996768367698098216382397827739829853838577859986389881816778778839887
164 22307010103227090722924107251092571263112691127128112834014092934211313727431443317334491457461394146346734748750349475095214995233735354151547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397827739829853838577859986389881816778778839887
165 223070101032270907229241072510925712631126911271281128340140929342113137274314433173344914574613941463467347487503494750952149952337353541515475155756356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829853838577859986389881816778778839887
166 22307010103227090722924107251092571263112691127128112834014092934211313727431443317334491457461394146346734748750349475095214995233735354151547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397739827782983838538577859986389881816778778839887
167 223070101032270907229241072510925712631126911271281128340140929342113137274314433173344914574613941463467347487503494750952149915152337353541547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397739827782983838538577859986389881816778778839887
168 2230701010322709072292410725109257126311269112712811283401409293421131372743144331733449145746139414634673474875034947509521499151523373535415475155756356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
169 2230701009070922710103229241072510925712631126911272728112834014092934211313733144317344914574334613941463467347487503494750952149915152337515415475575635356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
170 22307010090709227101310322924107251092571263112691127272811283401409293421134431373317344914574334613941463467347487503494750952149915152337515415475575635356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
171 22307010090709227101310191032292410725109257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
172 22307010090709227101310191021032292410725109257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
173 223070100907092271013101910210310722924109251257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
174 223070100907092271013101910210310331107229241092512571263132691127272811283401409293421137334431734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
175 223070100907092271013101910210310331103922924107251092571263132691127272811283401409293421137334431734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
176 223070100907092271013101910210310331103922924104910725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
177 223070100907092271013101910210310331103922924104910510725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
178 223070100907092271013101910210310331103922924104910510610725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
179 223070100907092271013101910210310331103922924104910510610631325107257109263269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
180 223070100907092271013101910210310331103922924104910510610631325106911072571092632692811272728340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
181 223070100907092271013101910210310331103922924104910510610631325106911072571087263269281092834012727409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
182 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109112727283401409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
183 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834012727409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
184 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
185 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
186 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
187 223070100907092271013101910210310331103922924104910510610631325106910725710872632692810911093283401097192934094127274211173344317433449457461373463467347487503494750952149919352337515154157547557563535695358757601635937960761796419764396479765365966199676836769809821677397782398277829838385385778599786389881811398839887787
188 223070100907092271013101910210310331103922924104910510610631325106910725710872632692810911093283401097192934094111727421123344317334494574337346137463467347487503494750952127514991935235354151575475575635695358757601635937960761796419764396479765365966199676836769809821677397782398277829838385385778599786389881811398839887787
189 1009070101307092232271019102103103310491051061063110392292410691072510872571091109326326928109719283401117274092934211233443131733449411294574337346137463467347487503494750952127514991935235354151575475575635695358757601635937960761796419764396479765365966199676836769809821677397782398277829838385385778599786389881811398839887787
190 10090701013070922322710191021031033104910510610631103922924106910725108725710911093263269281097192834011172740929342112334431317334494112945743373461374634673474875034947509521139523535412751499193547557563569535875760157607617964197643964796535937976596619967683676980982163823977398277829838385385778599786389881151816778778839887
191 100907010130709101910210310331049105106106311039223227106910722924108725109110932571097192632692811172728340112334092934211294113137334431734494574337461394634673474875034947509521151153523535412751499193547557563569535875760157607617964197643964796535937976596619967683676980982163823977398277829838385385778599786389881816778778839887
192 1009070101307091019102103103310491051061063110392232271069107229241087251091109325710971926326928111727283401123340929342112941131373344317344945743374613946346734748750349475095211511535235354116354751275575635695358757601499193593796076179641976439647976536596619967683676980982157739778239827782983838538578599786389881816778778839887
193 1009070101307092232271019102103103310491051061063110392292410691072510872571091109326326928109711171928340112334092934211294113137274317334433734494574613946346734748750349475095211511535235354127514991935475575635695358757601576076179641976439647965359379765966199676836769809821677397782398277829838385385778599786388181163898839887787
194 10090701013070922322710191021031033104910510610631103922924106910725108725710911093263269281097111719283401123340929342112941131372743173344337344945746139463467347487503494750952115115352353541163547512755756356953587576014991935937960761796419764396479765365966199676836769809821577397782398277829838385385785997863898811816778778839887
195 100907010130709101910210310331049105106106311039223227106910722924108725109110932571097111719263269281123283401129293409411313727421151153443173344945743346139463467347487503494750952116352337353541181187512754755756356953587576014991935937960761796419764396479765365966199676836769809821577397782398277829838385385785997863898816778778839887
196 100907010130709101910210310331049105106106310691072231103922710872292410911093251097111711232571926326928112928340113137274092934211511534431733449411634574334613946346734748750349475095211811875119352337353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
197 100907010130709101910210310331049105106106310691072231103922710872292410911093251097111711232571926326928112928340113137274092934211511534431733449411634574334613946346734748750349475095211811875119352337353541201275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
198 1009070101307091019102103103310491051061063106910710872231103922710911093229241097111711232511292571926326928113132834011511534092934211634431733449411811872743345746137346346734748750349475095211935233751201213953535412754755756356958757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
199 10090701013070910191021031033104910510610631069107108710911039223110932271097111711232292411292511313257192632692811511532834011634092934211811872743173344334494119345746137346346734748750349475095212012139523375121754127547557563535695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
200 100907010130709101910210310331049105106106310691071087109109311039110971117112322711292292411313251151153257192632692811632834011811872740929342119344317334494120121373457433461394634673474875034947509521217512233752353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887

Đây là tập lệnh Python 3 để gọi bộ giải Concorde lặp đi lặp lại cho đến khi nó xây dựng các giải pháp.

Concorde là miễn phí cho sử dụng học tập. Bạn có thể tải xuống tệp nhị phân thực thi của Concorde được xây dựng với gói lập trình tuyến tính QSopt của riêng họ hoặc nếu bạn bằng cách nào đó có giấy phép cho IBM CPLEX, bạn có thể xây dựng Concorde từ nguồn để sử dụng CPLEX.

#!/usr/bin/env python3
'''
Find prime containment numbers (OEIS A054261) using the Concorde
TSP solver.

The n-th prime containment number is the smallest natural number
which, when written in decimal, contains the first n primes.
'''

import argparse
import itertools
import os
import sys
import subprocess
import tempfile

def join_strings(a, b):
  '''Shortest string that starts with a and ends with b.'''
  for overlap in range(min(len(a), len(b)), 0, - 1):
    if a[-overlap:] == b[:overlap]:
      return a + b[overlap:]
  return a + b

def is_prime(n):
  if n < 2:
    return False
  d = 2
  while d*d <= n:
    if n % d == 0:
      return False
    d += 1
  return True

def prime_list_reduced(n):
  '''First n primes, with primes that are substrings of other
     primes removed.'''
  primes = []
  p = 2
  while len(primes) < n:
    if is_prime(p):
      primes.append(p)
    p += 1

  reduced = []
  for p in primes:
    if all(p == q or str(p) not in str(q) for q in primes):
      reduced.append(p)
  return reduced

# w_med is an offset for actual weights
# (we use zero as a dummy weight when splitting nodes)
w_med = 10**4
# w_big blocks edges from being taken
w_big = 10**8

def gen_tsplib(prefix, strs, start_candidates):
  '''Generate TSP formulation in TSPLIB format.

     Returns a TSPLIB format string that encodes the length of the
     shortest string starting with 'prefix' and containing all 'strs'.

     start_candidates is the set of strings that solution paths are
     allowed to start with.
     '''
  N = len(strs)

  # Concorde only supports symmetric TSPs. Therefore we encode the
  # asymmetric TSP instances by doubling each node.
  node_in = lambda i: 2*i
  node_out = lambda i: node_in(i) + 1
  # 2*(N+1) nodes because we add an artificial node with index N
  # for the start/end of the tour. This node is also doubled.
  num_nodes = 2*(N+1)

  # Ensure special offsets are big enough
  assert w_med > len(prefix) + sum(map(len, strs))
  assert w_big > w_med * num_nodes

  weight = [[w_big] * num_nodes for _ in range(num_nodes)]
  def edge(src, dest, w):
    weight[node_out(src)][node_in(dest)] = w
    weight[node_in(dest)][node_out(src)] = w

  # link every incoming node with the matching outgoing node
  for i in range(N+1):
    weight[node_in(i)][node_out(i)] = 0
    weight[node_out(i)][node_in(i)] = 0

  for i, p in enumerate(strs):
    if p in start_candidates:
      prefix_w = len(join_strings(prefix, p))
      # Initial length
      edge(N, i, w_med + prefix_w)
    else:
      edge(N, i, w_big)
    # Link every str to the end to allow closed tours
    edge(i, N, w_med)

  for i, p in enumerate(strs):
    for j, q in enumerate(strs):
      if i != j:
        w = len(join_strings(p, q)) - len(p)
        edge(i, j, w_med + w)

  out = '''NAME: prime-containment-number
TYPE: TSP
DIMENSION: %d
EDGE_WEIGHT_TYPE: EXPLICIT
EDGE_WEIGHT_FORMAT: FULL_MATRIX
EDGE_WEIGHT_SECTION
''' % num_nodes

  out += '\n'.join(
    ' '.join(str(w) for w in row)
    for row in weight
  ) + '\n'

  out += 'EOF\n'
  return out

def parse_tour_soln(prefix, strs, text):
  '''This constructs the solution from Concorde's 'tour' output format.
     The format simply consists of a permutation of the graph nodes.'''
  N = len(strs)
  node_in = lambda i: 2*i
  node_out = lambda i: node_in(i) + 1
  nums = list(map(int, text.split()))

  # The file starts with the number of nodes
  assert nums[0] == 2*(N+1)
  nums = nums[1:]

  # Then it should list a permutation of all nodes
  assert len(nums) == 2*(N+1)

  # Find and remove the artificial starting point
  start = nums.index(node_out(N))
  nums = nums[start+1:] + nums[:start]
  # Also find and remove the end point
  if nums[-1] == node_in(N):
    nums = nums[:-1]
  elif nums[0] == node_in(N):
    # Tour printed in reverse order
    nums = reversed(nums[1:])
  else:
    assert False, 'bad TSP tour'
  soln = prefix
  for i in nums:
    # each prime appears in two adjacent nodes, pick one arbitrarily
    if i % 2 == 0:
      soln = join_strings(soln, strs[i // 2])
  return soln

def scs_length(prefix, strs, start_candidates, concorde_path, concorde_verbose):
  '''Find length of shortest containing string using one call to Concorde.'''
  # Concorde's small-input solver CCHeldKarp, tends to fail with the
  # cryptic error message 'edge too long'. Brute force instead
  if len(strs) <= 5:
    best = len(prefix) + sum(map(len, strs))
    for perm in itertools.permutations(range(len(strs))):
      if perm and strs[perm[0]] not in start_candidates:
        continue
      soln = prefix
      for i in perm:
        soln = join_strings(soln, strs[i])
      best = min(best, len(soln))
    return best

  with tempfile.TemporaryDirectory() as tempdir:
    concorde_path = os.path.join(os.getcwd(), concorde_path)
    with open(os.path.join(tempdir, 'prime.tsplib'), 'w') as f:
      f.write(gen_tsplib(prefix, strs, start_candidates))

    if concorde_verbose:
      subprocess.check_call([concorde_path, os.path.join(tempdir, 'prime.tsplib')],
                            cwd=tempdir)
    else:
      try:
        subprocess.check_output([concorde_path, os.path.join(tempdir, 'prime.tsplib')],
                                cwd=tempdir, stderr=subprocess.STDOUT)
      except subprocess.CalledProcessError as e:
        print('Concorde exited with error code %d\nOutput log:\n%s' %
              (e.returncode, e.stdout.decode('utf-8', errors='ignore')),
              file=sys.stderr)
        raise

    with open(os.path.join(tempdir, 'prime.sol'), 'r') as f:
      soln = parse_tour_soln(prefix, strs, f.read())
    return len(soln)

# Cache results from previous N's
pcn_solve_cache = {} # (prefix fragment, strs) -> soln

def pcn(n, concorde_path, concorde_verbose):
  '''Find smallest prime containment number for first n primes.'''
  strs = list(map(str, prime_list_reduced(n)))
  target_length = scs_length('', strs, strs, concorde_path, concorde_verbose)

  def solve(prefix, strs, target_length):
    if not strs:
      return prefix

    # Extract part of prefix that is relevant to cache
    prefix_fragment = ''
    for s in strs:
      next_prefix = join_strings(prefix, s)
      overlap = len(prefix) + len(s) - len(next_prefix)
      fragment = prefix[len(prefix) - overlap:]
      if len(fragment) > len(prefix_fragment):
        prefix_fragment = fragment
    fixed_prefix = prefix[:len(prefix) - len(prefix_fragment)]
    assert fixed_prefix + prefix_fragment == prefix

    cache_key = (prefix_fragment, tuple(strs))
    if cache_key in pcn_solve_cache:
      return fixed_prefix + pcn_solve_cache[cache_key]

    # Not in cache, we need to calculate it.
    soln = None

    # Try strings in ascending order until scs_length reports a
    # solution with equal length. That string will be the
    # lexicographically smallest extension of our solution.
    next_prefixes = sorted((join_strings(prefix, s), s)
                           for s in strs)

    # Try first string -- often works
    next_prefix, _ = next_prefixes[0]
    next_prefixes = next_prefixes[1:]
    next_strs = [s for s in strs if s not in next_prefix]
    next_length = scs_length(next_prefix, next_strs, next_strs,
                             concorde_path, concorde_verbose)
    if next_length == target_length:
      soln = solve(next_prefix, next_strs, next_length)
    else:
      # If not, do a weighted binary search on remaining strings
      while len(next_prefixes) > 1:
        split = (len(next_prefixes) + 2) // 3
        group = next_prefixes[:split]
        group_length = scs_length(prefix, strs, [s for _, s in group],
                                  concorde_path, concorde_verbose)
        if group_length == target_length:
          next_prefixes = group
        else:
          next_prefixes = next_prefixes[split:]
      if next_prefixes:
        next_prefix, _ = next_prefixes[0]
        next_strs = [s for s in strs if s not in next_prefix]
        check = True
        # Uncomment if paranoid
        #next_length = scs_length(next_prefix, next_strs, next_strs,
        #                         concorde_path, concorde_verbose)
        #check = (next_length == target_length)
        if check:
          soln = solve(next_prefix, next_strs, target_length)

    assert soln is not None, (
      'solve failed! prefix=%r, strs=%r, target_length=%d' %
      (prefix, strs, target_length))

    pcn_solve_cache[cache_key] = soln[len(fixed_prefix):]
    return soln

  return solve('', strs, target_length)

parser = argparse.ArgumentParser()
parser.add_argument('--concorde', type=str, default='concorde',
                    help='path to Concorde binary')
parser.add_argument('--verbose', action='store_true',
                    help='dump all Concorde output')
parser.add_argument('--start', type=int, metavar='N', default=1,
                    help='start at this N')
parser.add_argument('--end', type=int, metavar='N', default=1000000,
                    help='stop after this N')
parser.add_argument('--one', type=int, metavar='N',
                    help='solve for a single N and exit')

def main():
  opts = parser.parse_args(sys.argv[1:])

  if opts.one is not None:
    opts.start = opts.one
    opts.end = opts.one

  prev_soln = ''
  for n in range(opts.start, opts.end+1):
    primes = map(str, prime_list_reduced(n))
    if all(p in prev_soln for p in primes):
      soln = prev_soln
    else:
      soln = pcn(n, opts.concorde, opts.verbose)

    print('%d %s' % (n, soln))
    sys.stdout.flush()
    prev_soln = soln

if __name__ == '__main__':
  main()

Điều này thật không thể tin được. Vì vấn đề là NP-đầy đủ, tôi biết rằng bạn có thể chuyển đổi nó thành TSP theo lý thuyết. Nhưng ngay lập tức sử dụng một bộ giải TSP thực sự thông minh! Tôi sẽ phải điểm chuẩn sau ngày hôm nay, nhưng tôi khá chắc chắn rằng đây sẽ là giải pháp nhanh nhất cho đến nay.
maxb

Tôi cũng đảm bảo xác minh rằng cả hai giải pháp của bạn đều cho kết quả giống nhau cho 62 số đầu tiên. Giải pháp này cần bao nhiêu bộ nhớ? Tôi có thể đặt máy tính xách tay cũ của tôi để làm việc trong một vài ngày.
maxb

Tôi cũng ngạc nhiên như bạn. Trước đó, mô hình tinh thần của người giải quyết TSP của tôi bị giới hạn trong các tình huống liên quan đến các chuyến tham quan từ xa của Euclide đến các thành phố, sân bay, nhà kho, v.v. Concorde cắt qua chúng như bơ ấm.
japh

Trình giải quyết Concorde thậm chí sử dụng ít RAM hơn so với tập lệnh Python giám sát nó.
japh

Kết quả tuyệt vời! Tôi đã truy cập trang web Concorde vì thử thách này trước khi bạn đăng bài này, nhưng sau đó vẫn nghĩ rằng có lẽ không đáng để thử. Dù sao, tôi khá chắc chắn rằng OEIS quan tâm đến tất cả các kết quả của bạn. Chỉ cần cung cấp cho họ dưới dạng tệp b để có kết quả với tối đa 1000 chữ số và dưới dạng tệp cho kết quả dài hơn.
Christian Sievers

9

Sạch sẽ , điểm 25 trong 231 giây (điểm chính thức)

Các kết quả

  • 1 < n <= 23trong 42 36 giây trên TIO
  • n = 24 (2311294134347173535961967837989)trong 32 24 giây cục bộ
  • n = 25 (23112941343471735359619678378979)trong 210 160 giây cục bộ
  • n = 1đến n = 25được tìm thấy trong 231 giây cho điểm chính thức (được chỉnh sửa bởi maxb)

Điều này sử dụng một cách tiếp cận tương tự với giải pháp JS của Arnauld dựa trên sự từ chối hoán vị đệ quy, sử dụng một bộ cây chuyên dụng để đạt được nhiều tốc độ.

Đối với mỗi số nguyên tố cần khớp với số:

  1. kiểm tra xem số nguyên tố có phải là chuỗi con của một số nguyên tố khác không và nếu có, hãy loại bỏ nó
  2. sắp xếp danh sách các chuỗi con chính hiện tại, nối nó và thêm nó vào tập hợp cây cân bằng
  3. kiểm tra xem có bất kỳ số nguyên tố nào phù hợp ở mặt trước của bất kỳ số nguyên tố nào khác không, và nếu vậy, hãy tham gia chúng - bỏ qua các phần tử đã được đặt hàng liền kề được kiểm tra bằng bước từ chối

Sau đó, đối với mỗi cặp chuỗi con mà chúng ta đã tham gia, hãy xóa mọi chuỗi con của cặp đã tham gia đó khỏi danh sách các chuỗi con và lặp lại trên chuỗi đó.

Khi không còn chuỗi phụ nào có thể được nối với bất kỳ chuỗi con nào khác trên bất kỳ nhánh nào của đệ quy, chúng tôi sử dụng tập hợp cây đã được đặt hàng để nhanh chóng tìm thấy số thấp nhất chứa chuỗi phụ.

Những điều cần cải thiện / thêm vào:

  • Tránh xa việc hoán đổi toàn bộ không gian tìm kiếm, thay vào đó hãy tạo ra các ứng cử viên
  • Tạo tiền tố dựa trên tiền tố / Suffix để cho phép ghi nhớ
  • Đa luồng, phân chia công việc trên các tiền tố đồng đều với số lượng chủ đề

Có sự sụt giảm hiệu suất lớn giữa 19 -> 2024 -> 25do xử lý trùng lặp bởi bước thử nghiệm hợp nhất và bước từ chối ứng viên, nhưng những điều này đã được sửa.

Tối ưu hóa:

  • removeOverlap được thiết kế để luôn cung cấp một chuỗi các chuỗi con đã theo thứ tự tối ưu
  • uInsertMSpec giảm check-if-is-thành viên và insert-new-thành viên xuống một tập hợp
  • containmentNumbersSt kiểm tra xem giải pháp trước có hoạt động với số mới không
module main
import StdEnv,StdOverloadedList,_SystemEnumStrict
import Data.List,Data.Func,Data.Maybe,Data.Array
import Text,Text.GenJSON

// adapted from Data.Set to work with a single specific type, and persist uniqueness
:: Set a = Tip | Bin !Int a !.(Set a) !.(Set a)
derive JSONEncode Set
derive JSONDecode Set

delta :== 4
ratio :== 2

:: NumberType :== String

:: SetType :== NumberType

//uSingleton :: SetType -> Set
uSingleton x :== (Bin 1 x Tip Tip)

// adapted from Data.Set to work with a single specific type, and persist uniqueness
uFindMin :: !.(Set .a) -> .a
uFindMin (Bin _ x Tip _) = x
uFindMin (Bin _ _ l _)   = uFindMin l

uSize set :== case set of
	Tip = (0, Tip)
	s=:(Bin sz _ _ _) = (sz, s)
	
uMemberSpec :: String !u:(Set String) -> .(.Bool, v:(Set String)), [u <= v]
uMemberSpec x Tip = (False, Tip)
uMemberSpec x set=:(Bin s y l r)
	| sx < sy || sx == sy && x < y
		# (t, l) = uMemberSpec x l
		= (t, Bin s y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceL y l r)
	| sx > sy || sx == sy && x > y
		# (t, r) = uMemberSpec x r
		= (t, Bin s y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceR y l r)
	| otherwise = (True, set)
where
	sx = size x
	sy = size y

uInsertM :: !(a a -> .Bool) -> (a u:(Set a) -> v:(.Bool, w:(Set a))), [v u <= w]
uInsertM cmp = uInsertM`
where
	//uInsertM` :: a (Set a) -> (Bool, Set a)
	uInsertM` x Tip = (False, uSingleton x)
	uInsertM` x set=:(Bin _ y l r)
		| cmp x y//sx < sy || sx == sy && x < y
			# (t, l) = uInsertM` x l
			= (t, uBalanceL y l r)
			//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceL y l r)
		| cmp y x//sx > sy || sx == sy && x > y
			# (t, r) = uInsertM` x r
			= (t, uBalanceR y l r)
			//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceR y l r)
		| otherwise = (True, set)
		
uInsertMCmp :: a !u:(Set a) -> .(.Bool, v:(Set a)) | Enum a, [u <= v]
uInsertMCmp x Tip = (False, uSingleton x)
uInsertMCmp x set=:(Bin _ y l r)
	| x < y
		# (t, l) = uInsertMCmp x l
		= (t, uBalanceL y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceL y l r)
	| x > y
		# (t, r) = uInsertMCmp x r
		= (t, uBalanceR y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceR y l r)
	| otherwise = (True, set)

uInsertMSpec :: NumberType !u:(Set NumberType) -> .(.Bool, v:(Set NumberType)), [u <= v]
uInsertMSpec x Tip = (False, uSingleton x)
uInsertMSpec x set=:(Bin sz y l r)
	| sx < sy || sx == sy && x < y
		#! (t, l) = uInsertMSpec x l
		= (t, uBalanceL y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceL y l r)
	| sx > sy || sx == sy && x > y
		#! (t, r) = uInsertMSpec x r
		= (t, uBalanceR y l r)
		//= (t, Bin sz y l r)
		//= (t, if(t)(\y` l` r` = Bin sz y` l` r`) uBalanceR y l r)
	| otherwise = (True, set)
where
	sx = size x
	sy = size y

// adapted from Data.Set to work with a single specific type, and persist uniqueness
uBalanceL :: .a !u:(Set .a) !v:(Set .a) -> w:(Set .a), [v u <= w]
//a .(Set a) .(Set a) -> .(Set a)
uBalanceL x Tip Tip
	= Bin 1 x Tip Tip
uBalanceL x l=:(Bin _ _ Tip Tip) Tip
	= Bin 2 x l Tip
uBalanceL x l=:(Bin _ lx Tip (Bin _ lrx _ _)) Tip
	= Bin 3 lrx (Bin 1 lx Tip Tip) (Bin 1 x Tip Tip)
uBalanceL x l=:(Bin _ lx ll=:(Bin _ _ _ _) Tip) Tip
	= Bin 3 lx ll (Bin 1 x Tip Tip)
uBalanceL x l=:(Bin ls lx ll=:(Bin lls _ _ _) lr=:(Bin lrs lrx lrl lrr)) Tip
	| lrs < ratio*lls
		= Bin (1+ls) lx ll (Bin (1+lrs) x lr Tip)
	# (lrls, lrl) = uSize lrl
	# (lrrs, lrr) = uSize lrr
	| otherwise
		= Bin (1+ls) lrx (Bin (1+lls+lrls) lx ll lrl) (Bin (1+lrrs) x lrr Tip)
uBalanceL x Tip r=:(Bin rs _ _ _)
	= Bin (1+rs) x Tip r
uBalanceL x l=:(Bin ls lx ll=:(Bin lls _ _ _) lr=:(Bin lrs lrx lrl lrr)) r=:(Bin rs _ _ _)
	| ls > delta*rs
		| lrs < ratio*lls
			= Bin (1+ls+rs) lx ll (Bin (1+rs+lrs) x lr r)
		# (lrls, lrl) = uSize lrl
		# (lrrs, lrr) = uSize lrr
		| otherwise
			= Bin (1+ls+rs) lrx (Bin (1+lls+lrls) lx ll lrl) (Bin (1+rs+lrrs) x lrr r)
	| otherwise
		= Bin (1+ls+rs) x l r
uBalanceL x l=:(Bin ls _ _ _) r=:(Bin rs _ _ _)
	= Bin (1+ls+rs) x l r

// adapted from Data.Set to work with a single specific type, and persist uniqueness
uBalanceR :: .a !u:(Set .a) !v:(Set .a) -> w:(Set .a), [v u <= w]
uBalanceR x Tip Tip
	= Bin 1 x Tip Tip
uBalanceR x Tip r=:(Bin _ _ Tip Tip)
	= Bin 2 x Tip r
uBalanceR x Tip r=:(Bin _ rx Tip rr=:(Bin _ _ _ _))
	= Bin 3 rx (Bin 1 x Tip Tip) rr
uBalanceR x Tip r=:(Bin _ rx (Bin _ rlx _ _) Tip)
	= Bin 3 rlx (Bin 1 x Tip Tip) (Bin 1 rx Tip Tip)
uBalanceR x Tip r=:(Bin rs rx rl=:(Bin rls rlx rll rlr) rr=:(Bin rrs _ _ _))
	| rls < ratio*rrs
		= Bin (1+rs) rx (Bin (1+rls) x Tip rl) rr
	# (rlls, rll) = uSize rll
	# (rlrs, rlr) = uSize rlr
	| otherwise
		= Bin (1+rs) rlx (Bin (1+rlls) x Tip rll) (Bin (1+rrs+rlrs) rx rlr rr)
uBalanceR x l=:(Bin ls _ _ _) Tip
	= Bin (1+ls) x l Tip
uBalanceR x l=:(Bin ls _ _ _) r=:(Bin rs rx rl=:(Bin rls rlx rll rlr) rr=:(Bin rrs _ _ _))
	| rs > delta*ls
		| rls < ratio*rrs
			= Bin (1+ls+rs) rx (Bin (1+ls+rls) x l rl) rr
		# (rlls, rll) = uSize rll
		# (rlrs, rlr) = uSize rlr
		| otherwise
			= Bin (1+ls+rs) rlx (Bin (1+ls+rlls) x l rll) (Bin (1+rrs+rlrs) rx rlr rr)	
	| otherwise
		= Bin (1+ls+rs) x l r
uBalanceR x l=:(Bin ls _ _ _) r=:(Bin rs _ _ _)
	= Bin (1+ls+rs) x l r
		
primes :: [Int]
primes =: [2: [i \\ i <- [3, 5..] | let
		checks :: [Int]
		checks = TakeWhile (\n . i >= n*n) primes
	in All (\n . i rem n <> 0) checks]]

primePrefixes :: [[NumberType]]
primePrefixes =: (Scan removeOverlap [|] [toString p \\ p <- primes])

removeOverlap :: !u:[NumberType] NumberType -> v:[NumberType], [u <= v]
removeOverlap [|] nsub = [|nsub]
removeOverlap [|h: t] nsub
	| indexOf h nsub <> -1
		= removeOverlap t nsub
	| nsub > h
		= [|h: removeOverlap t nsub]
	| otherwise
		= [|nsub, h: Filter (\s = indexOf s nsub == -1) t]

tryMerge :: !NumberType !NumberType -> .Maybe .NumberType
tryMerge a b = first_prefix (max (size a - size b) 0)
where
	sa = size a - 1
	max_len = min sa (size b - 1)
	first_prefix :: !Int -> .Maybe .NumberType
	first_prefix n
		| n > max_len
			= Nothing
		| b%(0,sa-n) == a%(n,sa)
			= Just (a%(0,n-1) +++. b)
		| otherwise
			= first_prefix (inc n)

mergeString :: !NumberType !NumberType -> .NumberType
mergeString a b = first_prefix (max (size a - size b) 0) 
where
	sa = size a - 1
	first_prefix :: !Int -> .NumberType
	first_prefix n
		| b%(0,sa-n) == a%(n,sa)
			= a%(0,n-1) +++. b
		| n == sa
			= a +++. b
		| otherwise
			= first_prefix (inc n)
	
// todo: keep track of merges that we make independent of the resulting whole number
mapCandidatePermsSt :: ![[NumberType]] !u:(Set .NumberType) -> v:(Set NumberType), [u <= v]
mapCandidatePermsSt [|] returnSet = returnSet
mapCandidatePermsSt [h:t] returnSet
	#! (mem, returnSet) = uInsertMSpec (foldl mergeString "" h) returnSet
	= let merges = [removeOverlap h y \\ [x:u=:[_:v]] <- tails h, (Just y) <- Map (tryMerge x) v ++| Map (flip tryMerge x) u]
	in (mapCandidatePermsSt t o if(mem) id (mapCandidatePermsSt merges)) returnSet

containmentNumbersSt =: Tl (containmentNumbersSt` primePrefixes "")
where
	containmentNumbersSt` [p:pref] prev
		| all (\e = indexOf e prev <> -1) p
			= [prev: containmentNumbersSt` pref prev]
		| otherwise
			#! next = uFindMin (mapCandidatePermsSt [p] Tip)
			= [next: containmentNumbersSt` pref next]

minFinder :== (\a b = let sa = size a; sb = size b in if(sa == sb) (a < b) (sa < sb))

Start = [(i, ' ', n, "\n") \\ i <- [1..] & n <- containmentNumbersSt]

Hãy thử trực tuyến!

Lưu vào main.iclvà biên dịch với:clm -fusion -b -IL Dynamics -IL StdEnv -IL Platform main

Điều này tạo ra một tệp a.outnên được chạy dưới dạng a.out -h <heap_size>M -s <stack_size>M, <heap_size> + <stack_size>bộ nhớ sẽ được chương trình sử dụng tính bằng megabyte.
(Tôi thường đặt ngăn xếp thành 50MB, nhưng tôi hiếm khi có chương trình sử dụng nhiều đến mức đó)


2

Scala , điểm 137

Chỉnh sửa:

Các mã ở đây áp dụng quá mức vấn đề.

Do đó, giải pháp hoạt động cho nhiều đầu vào, nhưng không phải cho tất cả.


Bài gốc:

Ý kiến ​​cơ bản

Vấn đề đơn giản hơn

Trước tiên hãy đơn giản hóa vấn đề: Chúng tôi tìm kiếm một chuỗi chứa tất cả nsố nguyên tố đầu tiên, càng ngắn càng tốt. (không nhất thiết là số thấp nhất)

Đầu tiên, chúng ta tạo tập hợp các số nguyên tố và loại bỏ tất cả, đó là các chuỗi con của các số khác. Sau đó, chúng ta có thể áp dụng nhiều quy tắc, tức là nếu chỉ có một chuỗi kết thúc theo một chuỗi và chỉ một chuỗi bắt đầu với cùng một chuỗi đó, chúng ta có thể hợp nhất chúng. Một điều nữa là nếu một chuỗi bắt đầu và kết thúc với cùng một chuỗi (giống như 101), chúng ta có thể nối / thêm chuỗi đó vào một chuỗi khác mà không thay đổi kết thúc đó. (Những quy tắc đó chỉ mang lại trong những điều kiện nhất định, vì vậy hãy cẩn thận khi áp dụng chúng)

Nếu chúng ta không có các kết thúc / bắt đầu bằng nhau của chuỗi, chúng ta có thể nối chúng và có một chuỗi có độ dài tối thiểu chứa tất cả n số nguyên tố đầu tiên.

Những quy tắc đó không tầm thường để tìm ra, nhưng hầu hết thời gian, chúng đủ để giải quyết vấn đề này trong (tôi nghĩ rằng ..) Ôi(n4) hoặc ít hơn.

Có những trường hợp (tức là trong thế hệ cho n= =128), nơi những quy tắc đó là không đủ. Ở đó, chúng ta phải quay trở lại một thuật toán mất thời gian NP.

Vấn đề thực sự

Với thuật toán từ trên, chúng ta có thể tính toán độ dài kcủa kết quả. Hãy tưởng tượng chúng ta đã có một khởi đầu thần thánh của chuỗi:

10103..............
     ^ we want to know this digit

Sau đó, chúng ta có thể lấy thuật toán của mình từ bài toán đơn giản để kiểm tra nếu có một chuỗi bắt đầu bằng 101030, chứa tất cản số nguyên tố và có độ dài k. Nếu có, chúng ta có thể tiếp tục với chữ số tiếp theo, vì số nhỏ nhất được tìm kiếm không thể lớn hơn số đó. Nếu không, chúng tôi tăng chữ số cuối cùng, vì vậy chúng tôi nhận 101031và kiểm tra với điều đó. Bắt đầu với chuỗi rỗng, chúng ta có thể tạo số mong muốn trongÔi(nđăng nhập(n))×thời gian cho thuật toán đơn giản hơn.

Do đó, nếu các quy tắc trong thuật toán ở trên luôn luôn đủ, vấn đề sẽ được chứng minh là không phải NP-hard.

Phần "giải quyết TSP" trong chương trình của tôi chỉ được thực hiện bằng cách đơn giản hóa, nếu có thể (điều đó có thể cho 127 số đầu tiên). (Khi có thể, chúng tôi có thể dịch đệ quy đuôi findSeqthành một vòng lặp, vì vậy chúng tôi có thể chứng minh nó không phải là NP-hard). Nó chỉ trở nên khó khăn, nếu đơn giản hóa là không đủ, điều gì xảy ra lần đầu tiên chon= =128.

Thử trực tuyến

Scastie hết thời gian sau 30 giây, vì vậy nó dừng lại ở n75
https://scastie.scala-lang.org/Y9aPRusTRY2ve4avaKAsrA

import scala.annotation.tailrec

object Better {
  var primeLength: Int = 3
  var knownLengths: Map[(String,List[String]), Int] = Map()

  def main(args: Array[String]): Unit = {
    val start = System.currentTimeMillis()
    var last = ""
    Stream.from(1).foreach { i =>
      primeLength = primeList(i-1).toString.length
      val pcn = if (last.contains(primeList(i-1).toString)) last else calcPrimeContainingNumber(i)
      last = pcn
      if (System.currentTimeMillis() - start > 300 * 1000) // reached the time limit while calculating the last number, so, discard it and exit
        return
      println(i + ": " + pcn)
    }
  }

  def calcPrimeContainingNumber(n: Int): String = {
    val numbers = relevantNumbers(n)
    generateIntegerContainingSeq(numbers, numOfDigitsRequired(numbers, "X"), "X").tail
  }

  def relevantNumbers(n: Int): List[String] = {
    val primesRaw = primeList.take(n)
    val primes = primesRaw.map(_.toString).foldRight(List[String]())((i, l) => if (l.exists(_.contains(i))) l else i +: l)
    primes.sorted
  }

  @tailrec
  def generateIntegerContainingSeq(numbers: List[String], maxDigits: Int, soFar: String): String = {
    if (numbers.isEmpty)
      return soFar
    val nextDigit = (0 to 9).find(i => numOfDigitsRequired(numbers.filterNot((soFar + i).contains), soFar + i) == maxDigits).get
    generateIntegerContainingSeq(numbers.filterNot((soFar + nextDigit).contains), maxDigits, soFar + nextDigit)
  }

  def numOfDigitsRequired(numbers: List[String], soFar: String): Int = {
    soFar.length +
      knownLengths.getOrElse((soFar.takeRight(primeLength - 1), numbers), {
        val len = findAnySeq(soFar :: numbers).length - soFar.length
        knownLengths += (soFar.takeRight(primeLength - 1), numbers) -> len
        len
      })
  }

  def findAnySeq(numbers: List[String]): String = {
    val tails = numbers.flatMap(_.tails.drop(1).toSeq.dropRight(1)).distinct
      .filter(t => numbers.exists(n1 => n1.startsWith(t) && numbers.exists(n2 => n1 != n2 && n2.endsWith(t)))) // require different strings for start & end
      .sorted.sortBy(-_.length)
    val safeTails = tails.filterNot(t1 => tails.exists(t2 => t1 != t2 && t2.contains(t1))) // all those which are not substring of another tail

    @inline def merge(e: String, s: String, i: Int): String = findAnySeq((numbers diff List(e, s)) :+ (e + s.drop(i)))

    safeTails.foreach { overlap =>
      val ending = numbers.filter(_.endsWith(overlap))
      val starting = numbers.filter(_.startsWith(overlap))
      if (ending.nonEmpty && starting.nonEmpty) {
        if (ending.size == 1 && starting.size == 1 && ending != starting) { // there is really only one way
          return merge(ending.head, starting.head, overlap.length)
        }
        val startingAndEnding = ending.filter(_.startsWith(overlap))
        if (startingAndEnding.nonEmpty && ending.size > 1) {
          return merge(ending.filter(_ != startingAndEnding.head).head, startingAndEnding.head, overlap.length)
        } else if (startingAndEnding.nonEmpty && starting.size > 1) {
          return merge(startingAndEnding.head, starting.filter(_ != startingAndEnding.head).head, overlap.length)
        }
      }
    }

    @inline def startsRelevant(n: String): Boolean = tails.exists(n.startsWith)

    @inline def endsRelevant(n: String): Boolean = tails.exists(n.endsWith)

    safeTails.foreach { overlap =>
      val ending = numbers.filter(_.endsWith(overlap))
      val starting = numbers.filter(_.startsWith(overlap))
      ending.find(!startsRelevant(_)).foreach { e =>
        starting.find(endsRelevant)
          .orElse(starting.headOption) // if there is no relevant starting, take head (ending is already shown to be irrelevant)
          .foreach { s =>
          return merge(e, s, overlap.length)
        }
      }
      ending.find(startsRelevant).foreach { e =>
        starting.find(!endsRelevant(_)).foreach { s =>
          return merge(e, s, overlap.length)
        }
      }
    }
    safeTails.foreach { overlap =>
      val ending = numbers.filter(_.endsWith(overlap))
      val starting = numbers.filter(_.startsWith(overlap))
      return ending
        .flatMap(e => starting.filter(_ != e).map(s => merge(e, s, overlap.length)))
        .minBy(_.length)
    }

    if (tails.nonEmpty)
      throw new Error("that was unexpected :( " + numbers)

    numbers.mkString("")
  }


  // 1k primes
  val primeList = Seq(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71
    , 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173
    , 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
    , 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409
    , 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541
    , 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659
    , 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809
    , 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941
    , 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069
    , 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223
    , 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373
    , 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511
    , 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657
    , 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811
    , 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987
    , 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129
    , 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287
    , 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423
    , 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617
    , 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741
    , 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903
    , 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079
    , 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257
    , 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413
    , 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571
    , 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727
    , 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907
    , 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057
    , 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231
    , 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409
    , 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583
    , 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751
    , 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937
    , 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087
    , 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279
    , 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443
    , 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639
    , 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791
    , 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939
    , 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133
    , 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301
    , 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473
    , 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673
    , 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833
    , 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997
    , 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207
    , 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411
    , 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561
    , 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723
    , 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919)
}

Như Anders Kaseorg đã chỉ ra trong các bình luận, mã này có thể trả về kết quả dưới mức tối ưu (do đó, sai).

Các kết quả

Kết quả cho n[1,200]phù hợp với những từ japh trừ 187, 188, 189, 193.

1: 2
2: 23
3: 235
4: 2357
5: 112357
6: 113257
7: 1131725
8: 113171925
9: 1131719235
10: 113171923295
11: 113171923295
12: 1131719237295
13: 11317237294195
14: 1131723294194375
15: 113172329419437475
16: 1131723294194347537
17: 113172329419434753759
18: 2311329417434753759619
19: 231132941743475375961967
20: 2311294134347175375961967
21: 23112941343471735375961967
22: 231129413434717353759619679
23: 23112941343471735359619678379
24: 2311294134347173535961967837989
25: 23112941343471735359619678378979
26: 2310112941343471735359619678378979
27: 231010329411343471735359619678378979
28: 101031071132329417343475359619678378979
29: 101031071091132329417343475359619678378979
30: 101031071091132329417343475359619678378979
31: 101031071091131272329417343475359619678378979
32: 101031071091131272329417343475359619678378979
33: 10103107109113127137232941734347535961967838979
34: 10103107109113127137139232941734347535961967838979
35: 10103107109113127137139149232941734347535961967838979
36: 1010310710911312713713914923294151734347535961967838979
37: 1010310710911312713713914915157232941734347535961967838979
38: 1010310710911312713713914915157163232941734347535961967838979
39: 10103107109113127137139149151571631672329417343475359619798389
40: 10103107109113127137139149151571631672329417343475359619798389
41: 1010310710911312713713914915157163167173232941794347535961978389
42: 101031071091131271371391491515716316717323294179434753596181978389
43: 101031071091131271371391491515716316723294173434753596181917978389
44: 101031071091131271371391491515716316717323294179434753596181919383897
45: 10103107109113127137139149151571631671731792329418191934347535961978389
46: 10103107109113127137139149151571631671731791819193232941974347535961998389
47: 101031071091271313714915157163167173179181919321139232941974347535961998389
48: 1010310710912713137149151571631671731791819193211392232941974347535961998389
49: 1010310710912713137149151571631671731791819193211392232272941974347535961998389
50: 10103107109127131371491515716316717317918191932113922322722941974347535961998389
51: 101031071091271313714915157163167173179181919321139223322722941974347535961998389
52: 101031071091271313714915157163167173179181919321139223322722923941974347535961998389
53: 1010310710912713137149151571631671731791819193211392233227229239241974347535961998389
54: 101031071091271313714915157163167173179211392233227229239241819193251974347535961998389
55: 101031071091271313714915157163167173179211392233227229239241819193251972574347535961998389
56: 101031071091271313714915157163167173179211392233227229239241819193251972572634347535961998389
57: 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
58: 101031071091271313714915157163167173179211392233227229239241819193251972572632694347535961998389
59: 1010310710912713137149151571631671731792113922332277229239241819193251972572632694347535961998389
60: 101031071091271313714915157163167173211392233227722923924179251819193257263269281974347535961998389
61: 1010310710912713137149151571631671732113922332277229239241792518191932572632692819728343475359619989
62: 10103107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
63: 1010307107109127131371491515716316717321139223322772293239241792518191932572632692819728343475359619989
64: 10103071071091271311371391491515716316721173223322772293239241792518191932572632692819728343475359619989
65: 10103071071091271311371491515716313916721173223322772293239241792518191932572632692819728343475359619989
66: 10103071071091271311371491515716313921167223317322772293239241792518191932572632692819728343475359619989
67: 10103071071091271311371491515716313921167223317322772293239241792518191932572632692819728343475359619989
68: 1010307107109127131137149151571631392116722331732277229323924179251819193257263269281972833743475359619989
69: 1010307107109127131137149151571631392116722331732277229323924179251819193257263269281972833743475359619989
70: 101030710710912713113714915157163139211672233173227722932392417925181919325726326928197283374347534959619989
71: 101030710710912713113714915157163139211672233173227722932392417925181919325726337269281972834743534959619989
72: 101030710710912713113714915157163139211672233173227722932392417925181919337257263472692819728349435359619989
73: 10103071071091271311371491515716313921167223317322772293372392417925181919347257263492692819728353594367619989
74: 101030710710912713113714915157163139211672233173227722932392417925181919337347257263492692819728353594367619989
75: 1010307107109127131137313914915157163211672233173227722933792392417925181919347257263492692819728353594367619989
76: 101030710710912713113731391491515716321167223317322772293379239241792518191934725726349269281972835359438367619989
77: 101030710710912713113731391491515716321167223317337922772293472392417925181919349257263535926928197283674383896199
78: 1010307107109127131137313914915157163211672233173379227722934723972417925181919349257263535926928197283674383896199
79: 101030710710912713113731391491515721163223317337922772293472397241672517925726349269281819193535928367401974383896199
80: 101030710710912713113731391491515721163223317337922772293472397241672517925726349269281819193535928367401974094383896199
81: 101030710710912713113731391491515721163223317337922772293472397241916725179257263492692818193535928367401974094383896199
82: 1010307107109127131137313914915157223317322772293379239724191634725167257263492692817928353594018193674094211974383896199
83: 1010307107109127131137313914922331515722772293379239724191634725167257263492692817353592836740181938389409421197431796199
84: 101030710710912713113731391492233151572277229323972419163472516725726349269281735359283674018193838940942119743179433796199
85: 101030710710912713113731391492233151572277229323924191634725167257263492692817353592836740181938389409421197431794337943976199
86: 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443976199
87: 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443974496199
88: 1010307107109127131137313914922331515722772293239241916347251672572634926928173535928367401819383894094211974317943379443974494576199
89: 10103071071091271311373139149223315157227722932392419163472516725726349269281735359283674018193838940942119743179433794439744945746199
90: 10103071071091271311373139149223315157227722932392419163251672572634726928173492835359401819367409421197431794337944397449457461994638389
91: 10103071071091271311373139149223315157227722932392419163251672572634726928173492835359401819367409421197431794337944397449457461994638389467
92: 101030710710912713113731391492233151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467
93: 101030710710912713113731391492233151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467487
94: 101030710710912713113731392233149151572277229323924191632516725726347926928173492835359401819367409421197431794337944397449457461994638389467487
95: 1010307107109127131137313922331491515722772293239241916325167257263479269281734928353594018193674094211974317943379443974499457461994638389467487
96: 1010307107109127131137313922331491515722772293239241916325167257263269281734792834940181935359409421197431794337944397449945746199463674674875038389
97: 1010307107109127131137313922331491515722772293239241916325167257263269281734792834940181935359409421197431794337944397449945746199463674674875038389509
98: 101030710710912713113732233139227722932392419149151572516325726326928167283479401734940942118193535943179433794439744994574619746367467487503838950952199
99: 1010307107109127131137322331392277229324191491515725163257263269281672834794017349409421181935359431794337944394499457461974636746748750383895095219952397
100: 101030710710922331127131373227722932414915157251632572632692816728347940173494094211394317943379443944994574618191935359463674674875038389509521975239754199
101: 101030710710922331127131373227722932414915157251632572632692816728347401734940942113943179433794439449945746181919353594636746748750383895095219752397541995479
102: 101030710710922331127131373227722932414915157251632572632692816728347401734940942113943179433794439449945746181919353594636746748750383895095219752397541995479557
103: 101030710710922331127131373227722932414915157251632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389
104: 101030710710922331127131373227722932414915157251632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389569
105: 101030710722331109227127722932413137325149151571632572632692816728340173474094211394317943379443944945746181919349946353594674875036750952197523975419954795575638389569
106: 1010307107223311092271277229324131373251491515716325726326928167283401734740942113943179433794439449457461819193499463535946748750367509521975239754199547955775638389569
107: 1010307107223311092271277229324131373251491515716325726326928167283401734740942113943179433794439449457461819193499463535946748750367509521975239754199547955775638389569587
108: 10103071072233110922712772293241313732514915157163257263269281672834017340942113943179433794439449457461819193474634994674875035359367509521975239754199547955775638389569587
109: 10103071072233110922712772293241313732514915157163257263269281672834017340942113943179433794439449457461819193474634994674875035359367509521975239754199547955775638389569587599
110: 1010307223311072271092293241277251313732571491515726326928163283401674094211394317343379443944945746179463474674875034995095218191935359367523975419754795577563838956958759960199
111: 1010307223311072271092293241277251313732571491515726326928163283401674094211394317343379443944945746179463474674875034995095218191935359367523975419754795577563838956958759960199607
112: 1010307223311072271092293241277251491515716325726326928167283401734094211313734317943379443944945746139463474674875034995095218191935359367523975419754795577563838956958759960199607
113: 22331101030722710722932410925127725714915157263269281632834016740942113137343173433794439449457461394634746748750349950952181919353593675239754197547955775638389569587599601996076179
114: 2233110103072271072293241092512571277263269281491515728340163409421131373431734337944394494574613946347467487503499509521675239754191819353593675479557756383895695875996019760761796199
115: 22331010307227107229324109251257126311277269281491515728340163409421131373431734337944394494574613946347467487503499509521675239754191819353593675479557756383895695875996019760761796199
116: 22331010307227107229324109251257126311269281277283401491515740942113137343173433794439449457461394634674875034750952163499523975416754795577563535936756958759960181919383896076179619764199
117: 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675479557756353593675695875996018191938389607617961976419964397
118: 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675475577563535936756958759960181919383896076179619764199643976479
119: 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346748750347509521634995239541675475577563535695875935996018191936760761796197641996439764796538389
120: 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467487503475095216349952395416754755775635356958760181919359367607617961976419964397647965383896599
121: 22331010307227107229324109251257126311269281277283401491515740942113137343173443379449457461394634674875034750952163499523954167547557756353569587601819193593676076179641976439764796538389659966199
122: 223310103072271072293241092512571263112692812772834014915157409421131373431734433794494574613946346734748750349950952163523954167547557756353569587601819193593676076179641976439764796538389659966199
123: 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936776076179641976439764796538389659966199
124: 2233101030722710722932410925125712631126928127728340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
125: 22331010307227107229324109251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
126: 2233101030701072271092293241251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
127: 223310103070107092271092293241251257126311269127728128340149151574094211313734317344337944945746139463467347487503499509521635239541675475577563535695876018191935936076179641976439764796536776599661996838389
128: 223310103070107092271092293241251257191263112691277281283401491515740942113137343173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
129: 22331010307010709227109229324125125719126311269127277281283401491515740942113137343173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
130: 223307010103227092293241072510925712631126912719128128340140942113137331491515727743173443379449457461394634673474875034995095216352395416754755775635356958760181935936076179641976439764796536776599661996838389
131: 2233070101032270922932410725109257126311269127191281283401409421131373314915157277431734433794494574613946346739487503475095216349952395416754755775635356958760181935936076179641976439764796536776599661996838389
132: 2233070101032270922932410725109257126311269127191281283401409421131373314915157277431734433794494574613946346739487503475095216349952395416754755775635356958760181935936076179641976439764796536776599661996838389
133: 223307010103227092293241072510925712631126912719128128340140942113137331443173449149457277433794613946346739487503475095215157516349952395416754755775635356958760181935936076179641976439764796536776599661996838389
134: 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727743379461394634673948750347509521515751634995239541675475575635356958757760181935936076179641976439764796536776599661996838389
135: 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727743379461394634673948750347509521515751634995239541675475575635356958757760181935936076179641976439764796536776599661996838389
136: 2233070101032270922932410725109257126311269127191281283401409421131373314431734491494572774337946139463467394875034750952151575163499523954167547557563535695875776018193593607617964197643976479653677696599661996838389
137: 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479653677696599661996838389
138: 2233070101032270922932410725109257126311269127191281283401409421131373314431734491494572773461394634673948743379503475095215157516349952395416754755756353569587577601819359360761796419764397647965367787696599661996838389
139: 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389
140: 22330701010322709229324107251092571263112691271912812834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389809
141: 223307010103227092293241072510925712631126912719128112834014094211313733144317344914945727734613946346739487433795034750952151575163499523954167547557563535695875776018193593607617964197643976479765367787696599661996838389809
142: 223307010103227092293241072510925712631126912719128112834014094211313733144317344914572773461394634673948743379503475095214952395415157516349954755756353569587577601676076179641935936439764797653677659966197876968383898098218199
143: 223070101032270922932410725109257126311269127191281128340140942113137331443173449145727734613946346739487433475034950952149952337954151575163535475575635695875776016760761796419359364396479765367765996619768383898098218199823978769
144: 223070101032270922932410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151575163535475575635695875773960167607617964193593643964797653677659966197683838980982181998239769827787
145: 223070101032270922924107251092571263112691271912811283401409421131373314431734491457274334613946346734748750349509521499523379541515751635354755756356958757739601676076179641935936439647976536599661976836776980982181998239782778782938389
146: 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587577396016760761796419359364396479765367765996619768383976980982181998239827787829389
147: 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587577396016760761796419359364396479765365996619768367769809821819982397827787829383985389
148: 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365996619768367739769809821819982398277829383985389857787
149: 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365966197683677397698098218199823982778293839853898577878599
150: 2230701010322709229241072510925712631126912719128112834014094211313733144317344914572743346139463467347487503495095214995233795415157516353547557563569587576016760761796419359364396479765365966197683677397698098218199823982778293839853857787859986389
151: 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151575163535475575635695875760167607617964193593643964797653659661976836773976980982181998239827782938398538577877859986389
152: 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383985385778778599863898818199
153: 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857787785998638988181998839
154: 22307010103227092292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
155: 2230701010322709072292410725109257126311269127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
156: 22307010103227090722924107251092571263112691127191281128340140942113137331443173449145727433461394634673474875034950952149952337954151547515755756353569587576016359360761796419364396479765365966197683676980982167739782398277829383853857785998638988181998839887787
157: 22307010103227090722924107251092571263112691127191281128340140942113137331443173449193457274334613946346734748750349509521499523379541515475155756353569587576015760761796419764396479765359365966199683676980982163823978277398293838538577859986389881816778778839887
158: 2230701010322709072292410725109257126311269112719128112834014092934211313733144317344919345727433461394634673474875034950952149952337954151547515575635356958757601576076179641976439647976535936596619968367698098216382397827739829853838577859986389881816778778839887
159: 22307010103227090722924107251092571263112691127191281128340140929342113137274314433173344919345746139463467347487503495095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
160: 2230701010322709072292410725109257126311269112719128112834014092934211313727431443317334491934574613941463467347487503495095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
161: 223070101032270907229241072510925712631126911271912811283401409293421131372743144331733449193457461394146346734748750349475095214995233735354151547515575635695875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
162: 22307010103227090722924107251092571263112691127191281128340140929342113137274314433173344919345746139414634673474875034947509521499523373535415154751557563569535875760157607617964197643964796535937976596619968367698098216382397827739829853838577859986389881816778778839887
163: 2230701010322709072292410725109257126311269112719128112834014092934211313727431443317334491934574613941463467347487503494750952149952337353541515475155756356953587576015760761796419764396479653593797659661996768367698098216382397827739829853838577859986389881816778778839887
164: 22307010103227090722924107251092571263112691127128112834014092934211313727431443317334491457461394146346734748750349475095214995233735354151547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397827739829853838577859986389881816778778839887
165: 223070101032270907229241072510925712631126911271281128340140929342113137274314433173344914574613941463467347487503494750952149952337353541515475155756356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829853838577859986389881816778778839887
166: 22307010103227090722924107251092571263112691127128112834014092934211313727431443317334491457461394146346734748750349475095214995233735354151547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397739827782983838538577859986389881816778778839887
167: 223070101032270907229241072510925712631126911271281128340140929342113137274314433173344914574613941463467347487503494750952149915152337353541547515575635695358757601576076179641919359379643964797197653659661996768367698098216382397739827782983838538577859986389881816778778839887
168: 2230701010322709072292410725109257126311269112712811283401409293421131372743144331733449145746139414634673474875034947509521499151523373535415475155756356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
169: 2230701009070922710103229241072510925712631126911272728112834014092934211313733144317344914574334613941463467347487503494750952149915152337515415475575635356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
170: 22307010090709227101310322924107251092571263112691127272811283401409293421134431373317344914574334613941463467347487503494750952149915152337515415475575635356953587576015760761796419193593796439647971976536596619967683676980982163823977398277829838385385778599786389881816778778839887
171: 22307010090709227101310191032292410725109257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
172: 22307010090709227101310191021032292410725109257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
173: 223070100907092271013101910210310722924109251257126311269112727281128340140929342113443137331734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
174: 223070100907092271013101910210310331107229241092512571263132691127272811283401409293421137334431734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
175: 223070100907092271013101910210310331103922924107251092571263132691127272811283401409293421137334431734491457433461394146346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
176: 223070100907092271013101910210310331103922924104910725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
177: 223070100907092271013101910210310331103922924104910510725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
178: 223070100907092271013101910210310331103922924104910510610725109257126313269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
179: 223070100907092271013101910210310331103922924104910510610631325107257109263269112727281128340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
180: 223070100907092271013101910210310331103922924104910510610631325106911072571092632692811272728340140929342113733443173449414574334613946346734748750349475095214991935233751515415475575635356953587576015760761796419643964796535937971976596619967683676980982163823977398277829838385385778599786389881816778778839887
181: 223070100907092271013101910210310331103922924104910510610631325106911072571087263269281092834012727409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
182: 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109112727283401409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
183: 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834012727409293421137334431734494145743346139463467347487503494750952149919352337515154154755756353569535875760157607617964196439647965359379719765966199676836769809821638239773982778298383853857785997863898811816778778839887
184: 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
185: 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
186: 2230701009070922710131019102103103311039229241049105106106313251069107257108726326928109110932834010971929340941272742113733443173449457433461394634673474875034947509521499193523375151541547557563535695358757601576076179641976439647965359379765966199676836769809821638239773982778298383853857785997863898811816778778839887
187: 223070100907092271013101910210310331103922924104910510610631325106910725710872632692810911093283401097192934094127274211173344317433449457461373463467347487503494750952149919352337515154157547557563535695358757601635937960761796419764396479765365966199676836769809821811397739823982778298383853857785997863898816778778839887
188: 223070100907092271013101910210310331103922924104910510610631325106910725710872632692810911093283401097192934094111727421123344317334494574337346137463467347487503494750952127514991935235354151575475575635695358757601635937960761796419764396479765365966199676836769809821811397739823982778298383853857785997863898816778778839887
189: 1009070101307092232271019102103103310491051061063110392292410691072510872571091109326326928109719283401117274092934211233443131733449411294574337346137463467347487503494750952127514991935235354151575475575635695358757601635937960761796419764396479765365966199676836769809821811397739823982778298383853857785997863898816778778839887
190: 10090701013070922322710191021031033104910510610631103922924106910725108725710911093263269281097192834011172740929342112334431317334494112945743373461374634673474875034947509521139523535412751499193547557563569535875760157607617964197643964796535937976596619967683676980982163823977398277829838385385778599786389881151816778778839887
191: 100907010130709101910210310331049105106106311039223227106910722924108725109110932571097192632692811172728340112334092934211294113137334431734494574337461394634673474875034947509521151153523535412751499193547557563569535875760157607617964197643964796535937976596619967683676980982163823977398277829838385385778599786389881816778778839887
192: 1009070101307091019102103103310491051061063110392232271069107229241087251091109325710971926326928111727283401123340929342112941131373344317344945743374613946346734748750349475095211511535235354116354751275575635695358757601499193593796076179641976439647976536596619967683676980982157739778239827782983838538578599786389881816778778839887
193: 1009070101307092232271019102103103310491051061063110392292410691072510872571091109326326928109711171928340112334092934211294113137274317334433734494574613946346734748750349475095211511535235354127514991935475575635695358757601576076179641976439647965359379765966199676836769809821811638239773982778298383853857785997863898816778778839887
194: 10090701013070922322710191021031033104910510610631103922924106910725108725710911093263269281097111719283401123340929342112941131372743173344337344945746139463467347487503494750952115115352353541163547512755756356953587576014991935937960761796419764396479765365966199676836769809821577397782398277829838385385785997863898811816778778839887
195: 100907010130709101910210310331049105106106311039223227106910722924108725109110932571097111719263269281123283401129293409411313727421151153443173344945743346139463467347487503494750952116352337353541181187512754755756356953587576014991935937960761796419764396479765365966199676836769809821577397782398277829838385385785997863898816778778839887
196: 100907010130709101910210310331049105106106310691072231103922710872292410911093251097111711232571926326928112928340113137274092934211511534431733449411634574334613946346734748750349475095211811875119352337353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
197: 100907010130709101910210310331049105106106310691072231103922710872292410911093251097111711232571926326928112928340113137274092934211511534431733449411634574334613946346734748750349475095211811875119352337353541201275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
198: 1009070101307091019102103103310491051061063106910710872231103922710911093229241097111711232511292571926326928113132834011511534092934211634431733449411811872743345746137346346734748750349475095211935233751201213953535412754755756356958757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
199: 10090701013070910191021031033104910510610631069107108710911039223110932271097111711232292411292511313257192632692811511532834011634092934211811872743173344334494119345746137346346734748750349475095212012139523375121754127547557563535695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
200: 100907010130709101910210310331049105106106310691071087109109311039110971117112322711292292411313251151153257192632692811632834011811872740929342119344317334494120121373457433461394634673474875034947509521217512233752353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
201: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112922711313241151153251163257192632692811811872728340120121373340929342119344317344941217433457461394634673474875034947509521223375122952353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
202: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112922711313241151153251163257192632692811811872728340120121373340929342119344317344941217433457461394634673474875034947509521223375122952353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
203: 10090701013070910191021031033104910510610631069107108710910931103911097111711231129113132271151153241163251181187257192632692812012137272834012173340929342119344317433449412233734574613946346734748750349475095212295235354123751275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
204: 100907010130709101910210310331049105106106310691071087109109311039110971117112311291131151153132271163241181187251201213725719263269281217272834012233409293421193443173344941229457433734613946346734748750349475095212375124952353541275475575635695358757601499196076179641976439647965359379765966199676836769809821577397782398277829838385385785997863898816778778839887
205: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112911311511531163132271181187241201213725121725719263269281223283401229293409412372742119344317334494574334613946346734748750349475095212495233735354125937953547512755756356958757601499196076179641976439647976535965966199676836769809821577397782398277829838385385785997863898816778778839887
206: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112911311511531163132271181187241201213725121725719263269281223283401229293409412372742119344317334494574334613946346734748750349475095212495233735354125937953547512773955756356958757601499196076179641976439647976535965966199676836769809821577823977827829838385385785997863898816778778839887
207: 10090701013070910191021031033104910510610631069107108710910931103911097111711231129113115115311631181187227120121313724121725122325719263269281229283401237274092934211934431733449412494574334613946346734748750349475095212593735233795353541277395475127955756356958757601499196076179641976439647976535965966199676836769809821577823977827829838385385785997863898816778778839887
208: 100907010130709101910210310331049105106106310691071087109109311039110971117112311291131151153116311811871201213137227121724122325122925719263269281237274012492934094125934211937334431734494574334613946346734748750349475095212773952337953535412795475128355756356958757601499196076179641976439647976535965966199676836769809821577823977827829838385385785997863898816778778839887
209: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112911311511531163118118712012131217227122313724122925123725719263269281249293401259340941277274211937334431734494574334613946346734748750349475095212795233795353541283547512895575635695875760149919607617964197643964797653596596619967683676980982157739778239827829838385385785997863898816778778839887
210: 1009070101307091019102103103310491051061063106910710871091093110391109711171123112911311511531163118118712012131217227122313724122925123725719263269281249293401259340941277274211937334431734494574334613946346734748750349475095212795233795353541283547512895575635695875760149919607617964197643964797653596596619967683676980982157739778239827829838385385785997863898816778778839887
211: 10090701013070910191021031033104910510610631069107108710910931103911097111711231129113115115311631181187120121312171223137227122924123725124925719263269281259293401277274094127942119344317334494574334613946346734748750349475095212835233735354128953547512975575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
212: 100907010130101910210310330709104910510610631069107108710910931103911097111711231129113115115311631181187120121312171223227122924123725124925719263269281259293401277274094127942119344313733173449457433461394634673474875034947509521283523375128953535412975475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
213: 10090701013010191021031033070910491051061063106910710871091093110391109711171123112911303115115311631181187120121312171223227122924123725124925719263269281259293401277274094127942119344313733173449457433461394634673474875034947509521283523375128953535412975475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
214: 1009070101301019102103103310491051061063106910709108710910931103911097111711231129113031151153116311811871201213071217122312292271237241249251259257192632692812772740127929340941283421193443131733449457433461373463467347487503494750952128952337512975413953535475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
215: 100907010130101910210310331049105106106310691070910871091093110391109711171123112911303115115311631181187120121307121712231229227123724124925125925719263131926928127727401279293409412834211934431733449457433461373463467347487503494750952128952337512975413953535475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
216: 100907010130101910210310331049105106106310691070910871091093110391109711171123112911303115115311631181187120121307121712231229227123724124925125925719263131926928127727401279293409412834211934431733449457433461321289463467347487503494750952129751373523375413953535475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
217: 1009070101301019102103103310491051061063106910709108710910931103911097111711231129113031151153116311811871201213071217122312291237227124924125925127725719263131926928127929340128340941289421193443173344945727433461321297463467347487503494750952132751373523375413953535475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
218: 1009070101301019102103103310491051061063106910709108710910931103911097111711231129113031151153116311811871201213071217122312291237227124924125925127725719263131926928127929340128340941289421193443173344945727433461297463467347487503494750952132132751361373523375413953535475575635695875760149919607617964197643964796535937976596619967683676980982157739778239827829838385385785997863898816778778839887
219: 100907010130101910210310331049105106106310691070910871091093110391109711171123112911303115115311631181187120121307121712231229123712492271259241277251279257192631319269281283401289293409412972742119344317334494574334613213274634673474875034947509521361367513735233754139535354755756356958757601499196076179641976439647965359379765966199676838098215769823977398278298383853857785997863898816778778839887
220: 100907010130101910210310331049105106106310691070910871091093110391109711171123112911303115115311631181187120121307121712231229123712492271259241277251279257192631319269281283401289293409412972742119344317334494574334613213274634673474875034947509521361367513735233754139535354755756356958757601499196076179641976439647965359379765966199676838098215769823977398278298383853857785997863898816778778839887
221: 100907010130101910210310331049105106106310691070910871091093110391109711171123112911303115115311631181187120121307121712231229123712492271259241277251279257192631319269281283401289293409412972742119344317334494574334613213274634673474875034947509521361367513735233754138139535354755756356958757601499196076179641976439647965359379765966199676838098215769823977398278298383853857785997863898816778778839887
222: 1009070101301019102103103310491051061063106910709108710910931103911097111711231129113031151153116311811871201213071217122312291237124922712592412772512792571926313192692812834012892934094129727421193443173344945743346132132746346734748750349475095213613675137352337541381399195353547557563569587576014996076179641976439647965359379765966199676838098215769823977398278298383853857785997863898816778778839887

Vấn đề siêu hậu quả phổ biến ngắn nhất được biết là NP-đầy đủ , do đó, thuật toán thời gian đa thức không quay ngược có thể không hoạt động trong mọi trường hợp, trừ khi tính chính xác của nó phụ thuộc vào một số tính chất đặc biệt của phân phối số nguyên tố (hoặc P = NP).
Anders Kaseorg

Tốt để biết! Nhưng vì chúng ta có những chuỗi rất đặc biệt (chon>>0không có chuỗi nào kết thúc bằng 0,2,4,5,6 hoặc 8, vì vậy chúng ta có thể tự do trao đổi các chuỗi bắt đầu bằng 0,2,4,5,6 hoặc 8 xung quanh). Cùng với đó, chúng ta có thể tránh các chu kỳ và - hầu hết thời gian (ngoại lệ duy nhất tôi tìm thấy cho đến nay là ởn= =128, ở đó tôi cần quay lại thuật toán NP) - giảm nó thành vấn đề P-hard. Sẽ rất thú vị nếu biết những trường hợp đó chỉ xảy ra một số lần hữu hạn (-> P) hay không (có thể là NP).
anselm

1
Với những lời cảnh báo như trên hầu hết thời gian và các trò chơi được tìm thấy cho đến nay, bạn có thể giải thích lý do tại sao chúng tôi nên tin tưởng rằng đầu ra của bạn là chính xác? Làm thế nào bạn có thể chắc chắn rằng một trong những đơn giản hóa cục bộ của bạn sẽ không ngăn bạn tìm ra tối ưu toàn cầu?
Anders Kaseorg

4
Ví dụ: nếu bạn thay thế ba số nguyên tố đầu tiên với 1234, 3423, 2345, bạn tạo ra 123453423thay cho tối ưu 12342345.
Anders Kaseorg

1
Ngoài ra, đây là một trường hợp vấn đề gồm 3 chữ số: 457, 571, 757(tất cả các số nguyên tố). findSeqsẽ trở lại 7574571cho điều này nhưng chiều dài ngắn nhất là 457571. Vì vậy, cách tiếp cận của bạn là chơi với lửa. Mặc dù được khuyến khích cho sự táo bạo tuyệt đối.
japh
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.