Hãy vẽ cờ của Nepal


28

Cờ của Nepal ( Wikipedia , Numberphile ) trông rất khác so với bất kỳ loại nào khác. Nó cũng có hướng dẫn vẽ cụ thể (có trong bài viết Wikipedia). Tôi muốn các bạn làm một chương trình vẽ cờ của Nepal.

Người dùng nhập chiều cao yêu cầu của cờ (từ 100 đến 10000 pixel) và chương trình xuất cờ của Nepal. Bạn có thể chọn bất kỳ cách nào để vẽ cờ: mọi thứ từ nghệ thuật ASCII đến OpenGL.

Đây là một cuộc thi phổ biến, vì vậy người chiến thắng sẽ là câu trả lời được bình chọn cao nhất vào ngày 1 tháng 2, vì vậy đừng lo lắng về độ dài của mã, nhưng hãy nhớ rằng mã ngắn hơn có thể nhận được nhiều phiếu bầu hơn.

Chỉ có một yêu cầu: bạn không được phép sử dụng tài nguyên web.

Chúc vui vẻ :)

hình ảnh lá cờ của Nepal từ Wikimedia Commons


1
Deja vu! Ngoài ra, có bao nhiêu hàng văn bản ASCII trong 100px?
Kendall Frey

@KendallFrey Vâng, nghệ thuật ASCII là một trong những cách để giải quyết vấn đề này, tuy nhiên không có câu trả lời cho câu hỏi của bạn. vì nó phụ thuộc vào kích thước phông chữ và khoảng cách giữa các dòng, nhà cung cấp câu trả lời nên tự mình đếm nó.
ST3

1
Trong trường hợp đó, chắc chắn print("|\\\n|\\")là một giải pháp hợp lệ. Tôi nghĩ bạn cần phải cụ thể hơn về các quy tắc cho các mục không phải bitmap.
Kendall Frey

5
Xin vui lòng không xóa và đăng lại câu hỏi của bạn. Có chỉnh sửa vì một lý do ... ngoài ra, không có liên kết trong câu hỏi mới của bạn.
Doorknob

1
Ngoài ra, thay vì không cho phép các tài nguyên internet, tại sao không yêu cầu cờ thực sự được vẽ (tức là được tạo bởi mã)?
Justin

Câu trả lời:


18

SVG, 1375, 1262, 1036, 999, 943, 939

<svg>
<defs>
<style>.w{fill:white}</style>
<g id="f"><path d="M1,1L1,20L18,20L6,10L17,10z" style="stroke:#003893;fill:#dc143c"/></g>
<g id="m"><polygon points="1,0 -.5,.86 -.5,-.86"/></g>
<g id="b"><polygon points="1,0 -.5,.86 -.5,-.86"/><polygon points="1,0 -.5,.86 -.5,-.86"transform="rotate(32)"/></g>
<g id="t"><use xlink:href="#b"/><use xlink:href="#b"transform="rotate(60)"/></g>
<g id="s">
<use xlink:href="#m"/>
<use xlink:href="#m"transform="rotate(20)"/>
<use xlink:href="#m"transform="rotate(45)"/>
<use xlink:href="#m"transform="rotate(70)"/>
<use xlink:href="#m"transform="rotate(90)"/>
</g>
</defs>
<g transform="scale(.7)">
<use xlink:href="#f" x="5" y="6"transform="scale(19,23)"/>
<use xlink:href="#t" x="2.8" y="7"class="w"transform="scale(70)"/>
<path d="M157,292 A 40,35 0 1 0 237,292 43,45 0 1 1 157,292z"class="w"/>
<use xlink:href="#s" x="5.6" y="8.9"class="w"transform="scale(35)"/>
</g>
</svg>

Kết xuất Chrome

SVG không thực sự có đầu vào của người dùng, AFAIK, vì vậy bạn có thể thay đổi quy mô sửa đổi dòng này:

<g transform="scale(.7)">


Cần có chính xác 8 hình tam giác trên Mặt trăng và 12 hình mặt trời. Nhưng bạn có 11 và 15.
Victor Stafusa

nên được sửa
Gabriele D'Antona

2
Nó có đầu vào của người dùng. Bằng cách nhấn CTRL + + hoặc CTRL + - người dùng có thể thay đổi tỷ lệ trong nhiều trình duyệt web.
Konrad Borowski

Nó dài 918 byte (bạn có thể sử dụng các kết thúc dòng Unix thay vì Windows để lưu một byte trên mỗi ngắt dòng). Và trong khi chúng ta đang ở chủ đề đó, bạn chỉ có thể thả các ngắt dòng hoàn toàn để đưa nó đến 897. Nhưng điều này hoàn toàn không hiển thị trong cả IE, Chrome, Firefox hoặc Inkscape cho tôi. Ít nhất không phải là một SVG độc lập. Chỉ khi được nhúng trong HTML (nhưng điều đó mang lại cho nó tới 960 byte). Sửa các lỗi XML đưa tệp tới 1008 byte. Tôi sẽ đánh nó xuống một chút.
Joey

hypftier.de/temp/svg.7z là kho lưu trữ Mercurial với những thay đổi tôi đã thực hiện. Bạn có thể kiểm tra các tin nhắn dễ dàng nhất với hg log --style=changelog -r 0..tip. Tôi có thể viết chi tiết hơn về các kỹ thuật tôi đã sử dụng ở đó.
Joey

27

JavaScript, 569 537 495 442 ký tự (ASCII)

h="";M=Math;Z=M.max;Y=M.min;function d(a,b,r,s,t){n=M.sqrt(a*a+e*e);return n-(r+M.abs((M.atan2(a,e
)/M.PI*b+t)%1-0.5)*s*n)}f=parseInt(prompt(),10);for(g=0;g<f;g++){for(k=0;k<2*f;k++)e=k/(0.5*f)-0.8
,q=g/(0.25*f),u=q-1.08,v=q-1.29,z=e*e+u*u-0.3364,E=Z(-e-0.8,Y(Z(0.62*e+0.8-q,-2.06+q),Z(1*e+0.8+
0.85-q,-3.87+q))),p=0>Y(d(q-2.91,6,0.38,0.7,10),Y(Z(e*e+v*v-0.3025,-z),Z(d(q-1.54,8,0.25,0.6,10.5)
,q-1.7)))?" ":-0.13>E?";":0>=E?"8":"",h+=p;h+="\n"}h 

Để chạy: sao chép-dán vào bảng điều khiển trình duyệt (ví dụ: công cụ dành cho nhà phát triển Chrome hoặc Fireorms)

Kết quả :

8 
8888 
8888888 
8888;88888 
8888;;;;88888 
8888;;;;;;;888888 
8888;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;; ;  ;  ; ;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;; ;;;;;               ;;;;; ;;;;;;;;;;;;;;;;88888 
8888;;;  ;;;;;;           ;;;;;;  ;;;;;;;;;;;;;;;;;;;888888 
8888;;;;   ;;;             ;;;   ;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;                       ;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;                   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;               ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;8888888888888888888888888888888888888888888888888888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;888 
8888;;;;;;;;;   ;;;   ;;;   ;;;;;;;;;;888 
8888;;;;;;;;;;             ;;;;;;;;;;;;;888 
8888;;;;                         ;;;;;;;;;888 
8888;;;;;;                     ;;;;;;;;;;;;;888 
8888;;;;;;;                   ;;;;;;;;;;;;;;;;888 
8888;;;                           ;;;;;;;;;;;;;;888 
8888;;;;;                       ;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;                   ;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;                       ;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;; ;;;;;             ;;;;; ;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;               ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;  ;;;;   ;;;;  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888888888888888888888888888888888888888888888888888888888888888888888888 
888888888888888888888888888888888888888888888888888888888888888888888888888 

EDIT: thêm chiều cao làm đầu vào của người dùng như ST3 đề xuất. nó hoạt động tốt nhất với các giá trị lớn (ví dụ: 120)


Vâng, có vẻ tốt, nhưng đầu vào của người dùng ở đâu? Đây là một trong những yêu cầu.
ST3

Tôi không biết điều đó (hoặc ít nhất là không đọc nó :)). Tôi đã cập nhật câu trả lời.
hổ báo

Mặt trăng của bạn có 6 hình tam giác. Nên có 8. Hơn nữa, nó đã đánh sập trình duyệt của tôi vì các giá trị lớn.
Victor Stafusa

Tôi xem lại toàn bộ mã. Kết xuất hiện gần với cờ gốc hơn và trông đẹp hơn, đặc biệt là đối với các giá trị chiều cao thấp (ví dụ: 20 pixel). Mặt trăng đã được cố định và có số lượng tam giác phù hợp (ngôi sao quá thấp để xem tất cả chúng). Giá trị chiều cao được đề xuất là "100".
tigrou

Điên trình tuyệt vời.
Pars Parsons

23

Toán học

Hiến pháp tạm thời của Nepal - Lịch trình 1 (liên quan đến Điều 6), trang 260 và 262, cung cấp 25 hướng dẫn chi tiết về cách xây dựng cờ. (xem http://www.ccd.org.np/resource/interim.pdf ). Các số trong các ý kiến ​​đề cập đến các hướng dẫn tương ứng trong hiến pháp.

Chúng ta sẽ cần các hàm để vẽ các tam giác đều và xác định khoảng cách từ một điểm đến một đường:

ClearAll[triangle]
triangle[a_?NumericQ,b_?NumericQ,c_?NumericQ,labeled_:True]:=
Block[{x,y,pt,sqr},sqr=#.#&;
pt[a1_,b1_,c1_]:=Reduce[sqr[{x,y}]==b1^2&&sqr[{x,y}-{a1,0}]==c1^2&&y>0,{x,y}];
{(
(*Polygon[{{0,0},{a,0},{x,y}}]*)
Polygon[{{-a/2(*0*),0},{a/2,0},{x-a/2,y}}]),
If[labeled,
{Text[Style[Framed[a,Background->LightYellow],11],{a/2,0}],
Text[Style[Framed[b,Background->LightYellow],11],{x/2,y/2}],
Text[Style[Framed[c,Background->LightYellow],11],{(a+x)/2,y/2}]},{}]}/.ToRules[pt[a,b,c]]]

(*distance from point to a line *)
dist[line_,{x0_,y0_}]:=(Abs[a x0+b y0+c]/.{x0-> m[[1]],y0-> m[[2]]})/Sqrt[a^2+b^2]; (* used below *)

Các mã còn lại, với các số tham khảo hướng dẫn. Cho đến nay, phần thử thách nhất là tạo ra các tia sáng cho mặt trăng và mặt trời. GeometricalTransformationcó ích để thực hiện các bản dịch và xoay.

    (*shape inside flag*)
(*1*)
w=100;a={0,0};b={w,0};
lAB=Line[{a,b}];
tA=Text["A",Offset[{-10,-20},a]];
tB=Text["B",Offset[{20,-20},b]];

(*2*)
c={0,w 4/3};d={0,w};
lAC=Line[{a,c}];
tC=Text["C",Offset[{-10,20},c]];
lAD=Line[{a,d}];
tD=Text["D",Offset[{-10,0},d]];
lBD=Line[{b,d}];

(*3*)
e=Solve[(x-w)^2+y^2==(w)^2&&y==w-x,{x,y}][[1,All,2]];
tE=Text["E",Offset[{15,0},e]];

(*4*)
f={0,e[[2]]};tF=Text["F",Offset[{-10,0},f]];
g={w,e[[2]]};tG=Text["G",Offset[{15,0},g]];
lFG=Line[{f,g}];
poly={a,b,e,g,c};

(*5*)lCG= Line[{c,g}];

(*moon*)
(*6*)
lineCG=N[((f[[2]]-c[[2]])/w)x+c[[2]](*100*)];
h={w/4,0};tH=Text["H",Offset[{0,-20},h]];
i={h[[1]],lineCG/.x->h[[1]]};tI=Text["I",Offset[{10,0},i]];
lHI={Dashed, LightGray,Line[{h,i}]};

(*7*)
j={0,f[[2]]+(c[[2]]-f[[2]])/2};tJ=Text["J",Offset[{-10,10},j]];
lineJG=N[((f[[2]]-j[[2]])/g[[1]])x+j[[2]]];
k={Solve[lineCG==j[[2]],x][[1,1,2]],j[[2]]};tK=Text["K",Offset[{10,10},k]];
(*k={Solve[lineCG\[Equal]c[[2]],x][[1,1,2]],j[[2]]};tK=Text["K",Offset[{10,10},k]];*)
lJK={Dashed, LightGray,Line[{j,k}]};

(*8*)l={i[[1]],j[[2]]};tL=Text["L",Offset[{0,10},l]];
(*9*)lJG={LightGray,Dashed,Line[{j,g}]};
(*10*)m={h[[1]],(lineJG/.x-> h[[1]])};tM=Text["M",Offset[{0,10},m]];
(*11*)distMfromBD=dist[{1,1,-w(*100*)},m];
 n={i[[1]],m[[2]]-distMfromBD};tN=Text["N",Offset[{0,0},n]];
(*ln=Abs[l[[2]]-n[[2]]];*)
(*12*)o={0,m[[2]]};tO=Text["O",Offset[{-10,0},o]];
lM={Dashed,LightGray,Line[{o,{g[[1]],o[[2]]}}]};

(*13*)
radiusLN=l[[2]]-n[[2]];
p={m[[1]]-radiusLN,m[[2]]};tP=Text["P",Offset[{0,10},p]];
q={m[[1]]+radiusLN,m[[2]]};tQ=Text["Q",Offset[{0,10},q]];
moonUpperEdge={White,Circle[l,radiusLN,{Pi,2 Pi}]};
moonLowerEdge={White,Circle[m,radiusMQ,{Pi,2 Pi}]};


(*14*)radiusMQ=q[[1]]-m[[1]];


(*15*)radiusNM=m[[2]]-n[[2]];
arc={Yellow,Circle[n,radiusNM,{Pi/7,6 Pi/7}]};
{r,s}=Solve[(x-l[[1]])^2+(y-l[[2]])^2==(radiusLN)^2 &&(x-n[[1]])^2+(y-n[[2]])^2==(radiusNM)^2,{x,y}][[All,All,2]];
tR=Text["R",Offset[{0,0},r]];
tS=Text["S",Offset[{0,0},s]];
t={h[[1]],r[[2]]};
tT={Black,Text["T",Offset[{0,0},t]]};


(*16*)radiusTS=Abs[t[[1]]-s[[1]]];
(*17*)radiusTM=Abs[t[[2]]-m[[2]]];

(*18 triangles*)
t2=Table[GeometricTransformation[GeometricTransformation[triangle[4,4,4,False][[1]],RotationTransform[k Pi/8]],{TranslationTransform[t]}],{k,-4,3}];
midRadius=(Abs[radiusTM+radiusTS]/2-2);
pos=1;table2=GeometricTransformation[t2[[pos++]],{TranslationTransform[#]}]&/@Table[midRadius {Cos@t,Sin[t]},{t,Pi/16,15 Pi/16,\[Pi]/8}];

(*19 sun*)u={0,f[[2]]/2};tU=Text["U",Offset[{-10,0},u]];
lineBD=N[(d[[2]]/w)x+d[[2]]];
v={-Solve[lineBD==u[[2]],x][[1,1,2]],u[[2]]};tV=Text["V",Offset[{10,0},v]];
lUV={LightGray,Dashed,Line[{u,v}]};

(*20*)w={h[[1]],u[[2]]};tW={Black,Text["W",Offset[{0,0},w]]};
(*21*)
(*22*)

t3=Table[GeometricTransformation[GeometricTransformation[triangle[9,9,9,False][[1]],RotationTransform[k Pi/6]],{TranslationTransform[w]}],{k,-3,9}];
midRadius3=(Abs[radiusTM+radiusTS]/2+2.5);
pos=1;
table3=GeometricTransformation[t3[[pos++]],{TranslationTransform[#]}]&/@Table[midRadius3 {Cos@t,Sin[t]},{t,0,2 Pi,2\[Pi]/12}];



Show[
Graphics[{Gray,
(*1*)lAB,tA,tB,
(*2*)lAC,tC,lAD,tD,lBD,
(*3*)tE,
(*4*)tF,lFG,tG,{Red,Opacity[.4],Polygon[poly]},
(*5*)lCG,
(*6*)tH,lCG,tI,lHI,
(*7*)tJ,lJK,tK,
(*8*)tL,
(*9*)lJG,
(*10*)tM,
(*11*)tN,
(*12*)lM,tO,
(*13*)moonUpperEdge,tP,tQ,
(*14*)moonLowerEdge,
(*15*)arc,tR,tS,tT,
(*16*){White,Dashed,Circle[t,radiusTS(*,{0, Pi}*)]},

(*17*){White,Opacity[.5],Disk[t,radiusTM,{0, 2 Pi}]},
(*18 triangles*){White,(*EdgeForm[Black],*)table2},
(*19 sun*)tU,tV,lUV,

(*20*)tW,{Opacity[.5],White,Disk[w,Abs[m[[2]]-n[[2]]]]},
(*21*)Circle[w,Abs[l[[2]]-n[[2]]]],
(*22*){Black(*White*),EdgeForm[Black],triangle[4,4,4,False](*table3*)},
{White,(*EdgeForm[Black],*)table3},

(*23*)
{Darker@Blue,Thickness[.03],Line[{a,b,e,g,c,a}]}

},
Ticks-> None(*{{0,100},{0,80,120,130}}*), BaseStyle-> 16,AspectRatio-> 1.3,Axes-> True],

(*cresent moon*)
RegionPlot[{(x-25)^2+(y-94.19)^2<21.4^2&&(x-25)^2+(y-102.02)^2>21.4^2},{x,0,100},{y,30,130},PlotStyle->{Red,White}]]

Cờ sau, từ mã trên, được thực hiện theo các hướng dẫn trong hiến pháp.

Màu sắc được sửa đổi để cho phép xem các đường xây dựng dễ dàng hơn. Các chữ cái đề cập đến các điểm và dòng trong hướng dẫn.

xây dựng cờ


Nhân tiện, cờ của thế giới có thể được gọi trực tiếp trong Mathicala. Ví dụ:

Graphics[CountryData["Nepal", "Flag"][[1]], ImageSize->{Automatic,200}]

Nepal


1
uhm, điều đó giống như gian lận ...
Gabriele D'Antona

friol, vâng, tôi đồng ý Đó là lý do tại sao tôi bao gồm một biến thể.
DavidC

1
IMO điều này không phá vỡ quy tắc, vì không có tài nguyên nào được tải trực tiếp từ web.
Tyzoid

2
Mathematica luôn cho phép cách gian lận.
ST3

13
@ ST3 Mathicala kẻ gian lận.
Oberon

9

Con trăn

import turtle, sys
from math import sqrt, sin, cos, pi

height = int(sys.argv[1])
width = height / 4 * 3
turtle.screensize(width, height)
t = turtle.Turtle()

# the layout
t.pencolor("#0044cc")
t.fillcolor("#cc2244")
t.pensize(width / 25)
t.pendown()
t.fill(True)
t.forward(width)
t.left(135)
t.forward(width)
t.right(135)
t.forward(width / sqrt(2))
t.right(90)
t.goto(0, height)
t.forward(height)
t.fill(False)
t.penup()

# the bottom star
t.fillcolor("#ffffff")
t.pencolor("#ffffff")
t.pensize(1)
radius = width / 5
x = width / 4
y = height / 4
t.goto(x + radius, y)
t.pendown()
t.fill(True)
for i in range(24):
    t.goto(x + radius * (5 + (-1) ** i) / 6 * cos(i * pi / 12), y + radius * (5 + (-1) ** i) / 6 * sin(i * pi / 12))
t.fill(False)
t.penup()

# the top star
radius = width / 9
x = width / 4
y = height * 2 / 3
t.goto(x + radius, y)
t.pendown()
t.fill(True)
for i in range(28):
    t.goto(x + radius * (6 + (-1) ** i) / 7 * cos(i * pi / 14), y + radius * (6 + (-1) ** i) / 7 * sin(i * pi / 14))
t.fill(False)
t.penup()

# the moon
radius = width / 5
x = width / 4
y = height / sqrt(2)
t.goto(x + radius, y)
t.pendown()
t.fill(True)
for i in range(30):
    t.goto(x + radius * cos(i * pi / 30), y - radius * sin(i * pi / 30))
for i in range(30):
    t.goto(x - radius * cos(i * pi / 30), y - radius / 2 * sin(i * pi / 30))
t.fill(False)
t.penup()
t.hideturtle()

raw_input("press enter")

Sử dụng rùa Tk của trăn, ví dụ python nepal.py 150python nepal.py 200tương ứng:

hình ảnh


Bạn có thể viết số ký tự trong mã nguồn của bạn không?
Gabriele D'Antona

Tại sao? Đây có phải là môn đánh gôn không?
mniip

Mặt trăng nên có chính xác 8 hình tam giác. Bạn có 9 rưỡi.
Victor Stafusa

@Victor Đã sửa. Không nhận ra rằng đó là một yêu cầu nghiêm ngặt
mniip

5

R (đừng nói về chiều dài )

nepaliflag = function(imaginary = FALSE, color = c("red", "white", "blue")){
    #Draws flag of Nepal with default colors red for inner area, white for Sun and Moon,
    #and blue for outer border
    #Based on instructions from http://www.servat.unibe.ch/icl/np01000_.html
    #Coded by Darshan Baral, with help from Urja Acharya
    #Fork at https://github.com/darshanbaral/R_codes/blob/master/nepali_flag.r
    graphics.off()
    windows(width = 6, height = 8)
    par(mar = c(3, 0.5, 2, 0.5))
    fs = 1 #Arbitrary scale unit for flag
    plot(fs, fs, xlim = c(0, fs), ylim = c(0, 1.5*fs),
         type = "p", pch = NA, axes = FALSE,
         xlab = "", ylab = "",
         asp = 1)

    title(main = "Flag of Nepal")

    #Perpendicular distance from a to bc
    dist_point_line <- function(a, b, c) {
        v1 <- b - c
        v2 <- a - b
        m <- cbind(v1,v2)
        return(abs(det(m))/sqrt(sum(v1*v1)))
    }

    #Distance from a to b
    dist_2_points <- function(a, b) {
        return(sqrt((a[1]-b[1])^2+(a[2]-b[2])^2))
    }

    #Intersection between lines ab and mn
    lines_intersection = function(a,b,m,n){
        A1 = b[2] - a[2]
        B1 = a[1] - b[1]
        C1 = a[1]*b[2] - a[2]*b[1]

        A2 = n[2] - m[2]
        B2 = m[1] - n[1]
        C2 = m[1]*n[2] - m[2]*n[1]      

        Delta = A1*B2 - A2*B1
        if(Delta == 0){
            return("Lines are parallel")
        } else {
            x = (B2*C1 - B1*C2)/Delta
            y = (A1*C2 - A2*C1)/Delta
            return(c(x,y))
        }
    }

    A = c(0,0)
    B = c(fs, 0)
    C = c(0, 4*B[1]/3)
    D = c(0, B[1])
    E = c( (B[1] - B[1]/sqrt(2)), B[1]/sqrt(2) )
    tE = c(E[1], A[2]) #Projecting E onto x-axis
    F = c(0, E[2] )
    G = c(B[1], E[2] )

    F_C = dist_2_points(F,C) #Distance between points F and C
    F_G = dist_2_points(F,G)
    B_tE = dist_2_points(B,tE)
    E_tE = dist_2_points(E,tE)

    upper_angle = pi/2 - atan(F_C/F_G) #Corner angle of upper triangle
    lower_angle = pi/2 - atan(E_tE/B_tE) #Corner angle of bottom triangle

    H = c(B[1]/4,0)
    I = c(H[1], G[2]+(G[1]-H[1])*(C[2]-F[2])/G[1] )
    J = c(0, 0.5*(C[2] + F[2]) )
    K = c( (C[2]-J[2])*G[1]/(C[2]-F[2]), J[2])
    L = c(H[1],J[2])
    M = lines_intersection(J, G, H, I)
    M_BD = dist_point_line(M, B, D) #Perpendicular distance between point M and line BD
    N = c(H[1], M[2]-M_BD)
    O = c(0, M[2])
    L_N = dist_2_points(L, N)
    L_M = dist_2_points(L, M)
    P = c(M[1] - sqrt(L_N^2 - L_M^2), M[2])
    Q = c(M[1] + sqrt(L_N^2 - L_M^2), M[2])
    L_Q = dist_2_points(L, Q)
    M_Q = dist_2_points(M, Q)
    M_N = dist_2_points(M, N)

    #Points of intersection of two circles
    temp_1 = (L_Q^2 - M_N^2 + M_N^2 ) / (2 * M_N)
    temp_2 = sqrt(L_Q^2 - temp_1^2)

    R = c(N[1]-temp_2, L[2]-temp_1)
    S = c(N[1]+temp_2, L[2]-temp_1)
    T = c(H[1], R[2])
    T_N = dist_2_points(T, N)
    T_S = dist_2_points(T, S)
    T_M = dist_2_points(T, M)

    U = c(A[1], 0.5 * (A[2]+F[2]))
    temp_U = c(H[1],U[2])
    V = lines_intersection(U, temp_U, B, E)
    W = c(H[1], U[2])

    #Draw inner polygon in red
    area = rbind(G, C, A, B, E)    
    polygon(area, col = color[1], border = NA)

    #Draw Moon arcs
    symbols (x = L[1], y = L[2], circles=c(L_N), add =TRUE, inches=FALSE, fg = NA, bg = color[2])
    symbols (x = M[1], y = M[2], circles=c(M_Q), add =TRUE, inches=FALSE, fg = NA, bg = color[2])
    symbols (x = L[1], y = L[2], circles=c(L_N), add =TRUE, inches=FALSE, fg = NA, bg = color[1])
    symbols (x = T[1], y = T[2], circles=c(T_M), add =TRUE, inches=FALSE, bg = color[2], fg = NA)

    #Draw Sun circles
    symbols (x = W[1], y = W[2], circles=c(M_N), add =TRUE, fg = NA, inches=FALSE, bg = NA)

    #Obtain points of triangles of the Sun
    sun_points = c(0,0)
    theta = 0
    for (i in 1:24){
        if (i %% 2 != 0){
            sun_points = rbind( sun_points, c( W[1]+L_N*cos(theta), W[2]+L_N*sin(theta)) )
        } else {
            sun_points = rbind( sun_points, c( W[1]+M_N*cos(theta), W[2]+M_N*sin(theta)) )
        }
        theta = theta + 2*pi/24
    }
    sun_points = sun_points[2:25,]

    #Obtain points of triangles of the Moon
    moon_points = c(0,0)
    theta = 0 - pi/8
    for (i in 1:20){
        if (i %% 2 != 0){
            moon_points = rbind( moon_points, c( T[1]+T_M*cos(theta), T[2]+T_M*sin(theta)) )
        } else {
            moon_points = rbind( moon_points, c( T[1]+T_S*cos(theta), T[2]+T_S*sin(theta)) )
        }
        theta = theta + pi/16
    }
    moon_points = moon_points[2:21,]

    par(xpd = TRUE)

    Ax = c(A[1] - T_N, A[2]) #Shift A to the left with a distance of TN
    Cx = c(C[1] - T_N, C[2])
    Ay = c(A[1], A[2] - T_N)
    By = c(B[1], B[2] - T_N) #Shift B to the bottom with a distance of TN

    Gx = c(G[1] + T_N, G[2])
    Gy = c(G[1], G[2] - T_N)
    Ey = c(E[1], E[2] - T_N)

    Kx = c(K[1] + T_N/cos(upper_angle), K[2]) #a point on parallel line TN away from upper slanting line
    Ix = c(I[1] + T_N/cos(upper_angle), I[2]) #another point on parallel line TN away from upper slanting line

    Bb = c(B[1] + T_N/cos(lower_angle), B[2]) #a point on parallel line TN away from lower slanting line
    Ee = c(E[1] + T_N/cos(lower_angle), E[2]) #another point on parallel line TN away from lower slanting line

    #Point of intersection for offsetting borders in corners
    Ap = lines_intersection(Ax, Cx, Ay, By) 
    Cp = lines_intersection(Kx, Ix, Ax, Cx)
    Gp = lines_intersection(Ix, Kx, Ey, Gy)
    Ep = lines_intersection(Bb, Ee, Ey, Gy)
    Bp = lines_intersection(Ay, By, Ee, Bb)

    #Draw triangles for Sun and Moon
    polygon(sun_points, col = color[2], border = NA)    
    polygon(moon_points, col = color[2], border = NA)   

    #Draw outer border
    borders = rbind(B, Bp, Ap, Cp, Gp, Ep, Bp, B, A, C, G, E, B)                
    polygon(borders, col=color[3], border = NA)

    #Draw white polygon on outside of upper triangle to get rid of part of initial circle
    outer_white = rbind(Cp,Gp,c(Gp[1],Cp[2]))
    polygon(outer_white,col = "white", border = NA)

    #Draw grids, cirlces, and points if imaginary is TRUE
    if (imaginary == TRUE){
        main_points = rbind(A, B, C, D, E, F, G, H, I, J, K, L, M, N, 
                            O, P, Q, R, S, T, U, V, W)  
        points(main_points, pch = 19, cex = 0.5)
        text(main_points, c("A", "B", "C", "D", "E", "F", "G", "H", "I",
                            "J", "K", "L", "M", "N", "O", "P", "Q", "R",
                            "S", "T", "U", "V", "W"), pos = 3, font =2)
        lines(rbind(H,I), lty = 2)
        lines(rbind(J,G), lty = 2)
        lines(rbind(J,K), lty = 2)
        lines(rbind(U,V), lty = 2)

        #Draw Moon arcs
        symbols (x = L[1], y = L[2], circles=c(L_N), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = M[1], y = M[2], circles=c(M_Q), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = N[1], y = N[2], circles=c(M_N), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = T[1], y = T[2], circles=c(T_S), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = T[1], y = T[2], circles=c(T_M), add =TRUE, inches=FALSE, bg = NA)

        #Draw Sun circles
        symbols (x = W[1], y = W[2], circles=c(M_N), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = W[1], y = W[2], circles=c(L_N), add =TRUE, inches=FALSE, bg = NA)          
    }
}

nhập mô tả hình ảnh ở đây


4

Con trăn (+ PIL), 578

Vì hôm nay tôi khá chán ..

from PIL import Image,ImageDraw
from math import*
I,k,l,m,n,o,_=Image.new('P',(394,480)),479,180,465,232,347,255;D=ImageDraw.Draw(I);P,G=D.polygon,D.pieslice
I.putpalette([_,_,_,0,0,_,_,20,60])
def S(x,y,r,e,l,b):
 p,a,h=[],2*pi/e,r*l;c,d=[0,-a/2][b],[a/2,0][b]
 for i in range(e):p+=[(x+r*cos(i*a+c),y+r*sin(i*a+c)),(x+h*cos(i*a+d),y+h*sin(i*a+d))]
 P(p,fill=0)
P([(0,0),(393,246),(144,246),(375,k),(0,k)],fill=1)
P([(14,25),(o,n),(110,n),(o,m),(14,m)],fill=2)
S(96,o,68,12,.6,0)
G([(31,90),(163,221)],0,l,fill=0)
G([(28,68),(166,200)],0,l,fill=2)
S(96,178,40,16,.7,1)
I.show()

nepal


Bạn có thêm hai hình tam giác trên cả mặt trăng và mặt trời, nên là 8 và 10, không phải 10 và 12 :)
Kade
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.