Tạo bản đồ thực tế


25

Tôi đã vẽ bản đồ này về các vùng của một từ tưởng tượng trong vài phút trong MS Paint:

bản đồ của tôi

Tôi nghĩ rằng việc có thể tạo ra các bản đồ như thế này theo chương trình sẽ rất tuyệt.

Thử thách

Viết chương trình lấy số nguyên dương Wvà tập hợp số nguyên dương Hkhông trống S.

Tạo một hình ảnh màu chuẩn tiêu chuẩn có Wchiều rộng Hpixel bằng pixel.

Đối với mỗi số nguyên itrong S, vẽ một vùng phẳng trong hình ảnh có diện tích bằng pixel tỷ lệ với i, sử dụng màu khác với bất kỳ vùng lân cận nào. Cụ thể, số lượng pixel trong vùng phải được W * H * i / sum(S)làm tròn lên hoặc xuống để đảm bảo rằng mọi pixel trong ảnh đều thuộc về một vùng .

Vùng phẳng là một tập hợp các pixel có thuộc tính mà bất kỳ pixel nào trong vùng có thể đạt được từ bất kỳ điểm nào khác bằng cách ở trong vùng đó và chỉ di chuyển trực giao (và không theo đường chéo). Bản đồ của tôi ở trên có 10 vùng phẳng.

Tất cả các pixel trong một vùng phẳng phải cùng màu, phải khác với màu của bất kỳ vùng lân cận nào. Các khu vực có thể có cùng màu nếu chúng không phải là hàng xóm.

Mặt khác, không có giới hạn về cách bạn định hình, vị trí hoặc tô màu các khu vực của bạn. Đây là một cuộc thi phổ biến. Mục tiêu là tạo ra một chương trình tạo ra các bản đồ thực tế về thế giới tưởng tượng, vật lý hoặc chính trị, với bất kỳ địa lý nào, ở bất kỳ quy mô nào.

Đương nhiên, xin vui lòng hiển thị hình ảnh đầu ra tốt nhất của bạn, không chỉ mã của bạn.

Chi tiết

  • Lấy đầu vào từ tệp, dòng lệnh, stdin hoặc tương tự. Lưu hình ảnh ở bất kỳ định dạng tiêu chuẩn hoặc hiển thị nó ra màn hình.
  • Chương trình của bạn nên được xác định cho đầu vào giống hệt nhau. Đó là, hình ảnh đầu ra nên lúc nào cũng được như vậy đối với một số đặc biệt H, WS. (Lưu ý rằng đó Slà một tập hợp , không phải là một danh sách, vì vậy thứ tự của nó không thành vấn đề.) Nếu không, bạn có thể sử dụng tính ngẫu nhiên khi muốn, mặc dù bạn không bắt buộc (nhưng tôi rất khuyến nghị).
  • Những hình ảnh đầu ra vị trí địa lý không cần phải "quy mô" cho các giá trị khác nhau của Whay H(mặc dù nó có thể). Nó có thể hoàn toàn khác nhau.
  • Bạn có thể chỉ định ngẫu nhiên các màu, bỏ qua quy tắc màu lân cận, miễn là có ít nhất 32 khả năng màu ngẫu nhiên, vì hai hàng xóm sẽ không thể có màu giống nhau.
  • Các khu vực dừng lại ở ranh giới hình ảnh. Không có bọc xung quanh .
  • Các vùng có thể chứa các pixel bằng 0 (và do đó không tồn tại), như trường hợp có nhiều vùng hơn pixel.

Ví dụ đầu vào

Một đệ trình hợp lệ có thể đã tạo ra bản đồ của tôi ở trên với các tham số:

W = 380
H = 260
S = {233, 420, 1300, 3511, 4772, 5089, 9507, 22107, 25117, 26744}

Các Sgiá trị này giống hệt như số pixel trong từng khu vực nhưng không cần phải như vậy. Hãy nhớ rằng đó Slà một bộ, vì vậy nó không nhất thiết phải luôn được sắp xếp.

Câu trả lời:


15

Tôi đồng ý với những người khác, Đây là một thử thách khó khăn đáng ngạc nhiên. Một phần do yêu cầu phải có các pixel được kết nối một cách ngẫu nhiên cùng loại, nhưng cũng do thách thức thẩm mỹ để làm cho các khu vực trông giống như một bản đồ của các quốc gia.

Đây là nỗ lực của tôi ... nó không hiệu quả khủng khiếp nhưng dường như tạo ra đầu ra hợp lý. Tiếp tục xu hướng sử dụng đầu vào chung cho mục đích so sánh:

Thông số: 380 260 233 420 1300 3511 4772 5089 9507 22107 25117 26744

nhập mô tả hình ảnh ở đây

Thông số: 380 260 8 5 6 7 8 4 5 6 7 9 4 6 9 5 8 7 5

nhập mô tả hình ảnh ở đây

Thời kỳ đen tối của lạc đà 213 307 1 1 1

nhập mô tả hình ảnh ở đây

Ví dụ lớn hơn của tôi: (640 480 6 1 7 2 9 3 4 5 6 1 9 8 7 44 3 1 9 4 5 6 7 2 3 4 9 3 4 5 9 8 7 5 6 1 2 1 2 1 2 6 7 8 9 63 3)

nhập mô tả hình ảnh ở đây

Một ví dụ với nhiều quốc gia hơn: 640 480 6 1 7 2 9 3 4 5 6 1 9 8 7 44 3 1 9 4 5 6 7 2 3 4 9 3 4 5 9 8 7 5 6 1 2 1 2 1 2 6 7 8 9 63 5 33 11 88 2 7 9 5 6 2 5 7

package GenerateRealisticMaps;

import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.Set;
import javax.imageio.ImageIO;

public class GenerateRealisticMaps
{
    private static final Random rand = new Random(3);
    private static final Color[] paletteizedColours = new Color[100];

    // create colour palette
    static
    {
        paletteizedColours[0] = new Color(0xFF000000);
        for (int i = 1; i < paletteizedColours.length; i++)
        {
            paletteizedColours[i] = Color.getHSBColor(rand.nextFloat(), rand.nextFloat(), 0.5f + rand.nextFloat() * 0.4f);
        }
    }

    /**
     * Represents a pixel that is the boundary of a region
     * @author default
     *
     */
    public static class BoundaryPixel
    {
        public BoundaryPixel(int x, int y, int otherRegionId)
        {
            super();
            this.x = x;
            this.y = y;
            this.otherRegionId = otherRegionId;
        }

        int x;
        int y;
        int otherRegionId;
    }

    /**
     * Group of adjacent pixels that represent a region (i.e. a country in the map)
     * @author default
     *
     */
    public static class Region
    {
        static private int masterId = 0;

        Region(int desiredSize)
        {
            this.desiredSize = desiredSize;
            id = ++masterId;
        }

        int desiredSize;
        int size = 0;
        int id;
        List<BoundaryPixel> boundary = new ArrayList<GenerateRealisticMaps.BoundaryPixel>();

    }

    /**
     * Container of regions
     * @author default
     *
     */
    public static class Regions
    {
        List<Region> regionList = new ArrayList<GenerateRealisticMaps.Region>();
        Map<Integer, Region> regionMap = new HashMap<Integer, GenerateRealisticMaps.Region>();
    }

    public static void main(String[] args) throws IOException
    {
        int width = Integer.parseInt(args[0]);
        int height = Integer.parseInt(args[1]);
        int[] s = new int[args.length - 2];

        // read in the region weights
        int sum = 0;
        for (int i = 0; i < args.length - 2; i++)
        {
            sum += s[i] = Integer.parseInt(args[i + 2]);
        }

        int totalPixels = width * height;

        double multiplier = ((double) totalPixels) / sum;

        // convert region weights to pixel counts
        int runningCount = 0;
        for (int i = 0; i < s.length - 1; i++)
        {
            runningCount += s[i] = (int) (multiplier * s[i]);
        }
        s[s.length - 1] = totalPixels - runningCount;

        Regions regions = new Regions();
        int[][] map = new int[width][height];

        // initialise region starting pixels
        for (int v : s)
        {
            Region region = new Region(v);
            regions.regionList.add(region);
            regions.regionMap.put(region.id, region);

            int x;
            int y;
            do
            {
                x = rand.nextInt(width);
                y = rand.nextInt(height);
            } while (map[x][y] != 0);

            map[x][y] = region.id;
            region.size++;

        }

        // initialise a "height" map that provides cost to claim a unclaimed region. This allows for more natural shaped countries
        int[][] heightMap = new int[width][height];
        for (int i = 0; i < width; i++)
        {
            for (int j = 0; j < height; j++)
            {
                heightMap[i][j] = rand.nextInt(50);
            }
        }

        boolean equal = false;

        // main loop
        do
        {
            growRegions(map, heightMap, width, height, regions);

            // determine whether regions have reached their desired size
            equal = true;
            for (Region region : regions.regionList)
            {
                equal = equal && region.size == region.desiredSize;
            }

            if (equal)
            {
                HashMap<Integer, Set<Integer>> commonIsolatedRegions = new HashMap<Integer, Set<Integer>>();
                int isolatedRegionId = 0;
                int[][] isolatedRegions = new int[width][height];
                List<Integer> isolatedRegionSize = new ArrayList<Integer>();
                isolatedRegionSize.add(-1); // add dummy entry at index 0 since region ids start at 1

                // go though each pixel and attempt to identify an isolated region from that point if it as not
                // yet been identified... i.e. an enclosed area.
                for (int i = 0; i < width; i++)
                {
                    for (int j = 0; j < height; j++)
                    {
                        if (isolatedRegions[i][j] == 0)
                        {
                            isolatedRegionId++;

                            Point point = new Point(i, j);
                            int size = identifyEnclosedArea(map, isolatedRegions, width, height, point, isolatedRegionId);

                            // add this isolated region id to the group of isolated regions associated with the region at this pixel
                            Set<Integer> isolatedRegionSet = commonIsolatedRegions.get(map[i][j]);
                            if (isolatedRegionSet == null)
                            {
                                isolatedRegionSet = new HashSet<Integer>();
                                commonIsolatedRegions.put(map[i][j], isolatedRegionSet);
                            }
                            isolatedRegionSet.add(isolatedRegionId);
                            isolatedRegionSize.add(size);
                        }
                    }
                }

                // only keep the largest isolated region in each group. Mark the other members in the group areas as unclaimed.
                for (Region region : regions.regionList)
                {
                    Set<Integer> isolatedRegionSet = commonIsolatedRegions.get(region.id);

                    // find the largest isolatedRegion mapped to this region
                    int largestIsolatedRegionId = -1;
                    int largestIsolatedRegionSize = -1;
                    for (Integer isolatedRegionIdentifier : isolatedRegionSet)
                    {
                        if (isolatedRegionSize.get(isolatedRegionIdentifier) > largestIsolatedRegionSize)
                        {
                            largestIsolatedRegionSize = isolatedRegionSize.get(isolatedRegionIdentifier);
                            largestIsolatedRegionId = isolatedRegionIdentifier;
                        }
                    }
                    // remove the largest isolated region (i.e. retain those pixels)
                    isolatedRegionSet.remove(largestIsolatedRegionId);

                    if (isolatedRegionSet.size() > 0)
                    {
                        equal = false;

                        // for all remaining isolated regions mapped to this region, convert to unclaimed areas.
                        for (Integer isolatedRegionIdentifier : isolatedRegionSet)
                        {
                            for (int i = 0; i < width; i++)
                            {
                                for (int j = 0; j < height; j++)
                                {
                                    if (isolatedRegions[i][j] == isolatedRegionIdentifier)
                                        map[i][j] = 0;
                                }
                            }
                        }
                    }
                }
            }

        } while (!equal);

        saveOutputImage("out.final.png", map);
    }

    /**
     * Renders and saves the output image
     * 
     * @param filename
     * @param map
     * @throws IOException
     */
    public static void saveOutputImage(String filename, int[][] map) throws IOException
    {

        final int scale = 1;
        final int width = map.length;
        final int height = map[0].length;
        BufferedImage image = new BufferedImage(width * scale, height * scale, BufferedImage.TYPE_INT_RGB);

        Graphics2D g = (Graphics2D) image.getGraphics();

        for (int j = 0; j < height; j++)
        {
            for (int i = 0; i < width; i++)
            {
                g.setColor(paletteizedColours[map[i][j]]);
                g.fillRect(i * scale, j * scale, scale, scale);
            }
        }

        ImageIO.write(image, "png", new File(filename));
    }

    /**
     * Grows the regions of the world. Firstly by unclaimed cells and then by distributing cells amongst the regions.
     * 
     * @param map
     *            cell to region map
     * @param heightMap
     *            the "height" cost of unclaimed cells. Used to give more natural shapes.
     * @param width
     * @param height
     * @param regions
     */
    public static void growRegions(int[][] map, int[][] heightMap, int width, int height, Regions regions)
    {
        // reset region sizes
        for (Region region : regions.regionList)
        {
            region.size = 0;
            region.boundary.clear();
        }

        // populate corners with adjacent pixel region id... these pixels cannot ever be "grown" into.
        map[0][0] = map[1][0];
        map[width - 1][0] = map[width - 1][5];
        map[width - 1][height - 1] = map[width - 2][height - 1];
        map[0][height - 1] = map[1][height - 1];

        int i, x, y, dx = 0, dy = 0, currHeight, currentId = -1, pixelRegionId;
        Region currRegion = null;
        ;

        // calculate initial region sizes
        for (y = 0; y < height; y++)
        {
            for (x = 0; x < width; x++)
            {
                if (map[x][y] > 0)
                    regions.regionMap.get(map[x][y]).size++;
            }
        }

        // expand regions into surrounding unclaimed pixels.
        // construct a list of region boundary pixels in the process.
        for (y = 1; y < height - 1; y++)
        {
            for (x = 1; x < width - 1; x++)
            {
                int cellId = map[x][y];
                if (cellId > 0)
                {
                    if (cellId != currentId)
                    {

                        currRegion = regions.regionMap.get(map[x][y]);
                        currentId = currRegion.id;
                    }

                    currHeight = heightMap[x][y]++;

                    for (i = 0; i < 4; i++)
                    {
                        switch (i)
                        {
                        case 0:
                            dx = x - 1;
                            dy = y;
                            break;
                        case 1:
                            dx = x + 1;
                            dy = y;
                            break;
                        case 2:
                            dx = x;
                            dy = y - 1;
                            break;
                        case 3:
                            dx = x;
                            dy = y + 1;
                            break;
                        }
                        pixelRegionId = map[dx][dy];
                        switch (pixelRegionId)
                        {
                        // unclaimed cell...
                        case 0:
                            if (heightMap[dx][dy] < currHeight)
                            {
                                map[dx][dy] = currRegion.id;
                                currRegion.size++;
                            }
                            break;
                        // claimed cell...
                        default:
                            if (pixelRegionId != currRegion.id)
                            {
                                currRegion.boundary.add(new BoundaryPixel(dx, dy, pixelRegionId));
                            }
                            break;
                        }
                    }
                }
            }
        }

        HashMap<Integer, List<BoundaryPixel>> neighbourBorders = new HashMap<Integer, List<BoundaryPixel>>();

        // for all regions...
        for (Region region : regions.regionList)
        {
            // that are less than the desired size...
            if (region.size < region.desiredSize)
            {
                neighbourBorders.clear();

                // identify the boundary segment per neighbour of the region
                for (BoundaryPixel boundaryPixel : region.boundary)
                {
                    List<BoundaryPixel> neighbourBorderSegment = neighbourBorders.get(boundaryPixel.otherRegionId);
                    if (neighbourBorderSegment == null)
                    {
                        neighbourBorderSegment = new ArrayList<GenerateRealisticMaps.BoundaryPixel>();
                        neighbourBorders.put(boundaryPixel.otherRegionId, neighbourBorderSegment);
                    }
                    neighbourBorderSegment.add(boundaryPixel);
                }

                out:
                // for each neighbour...
                for (int id : neighbourBorders.keySet())
                {
                    Region neighbourRegion = regions.regionMap.get(id);
                    int surplusPixelCount = neighbourRegion.size - neighbourRegion.desiredSize;
                    // that has surplus pixels...
                    if (surplusPixelCount > 0)
                    {
                        // and convert the border segment pixels to the current region...
                        List<BoundaryPixel> neighbourBorderSegment = neighbourBorders.get(id);
                        int index = 0;
                        while (surplusPixelCount-- > 0 && index < neighbourBorderSegment.size())
                        {
                            BoundaryPixel boundaryPixel = neighbourBorderSegment.get(index++);
                            map[boundaryPixel.x][boundaryPixel.y] = region.id;
                            region.size++;
                            regions.regionMap.get(boundaryPixel.otherRegionId).size--;
                            // until we reach the desired size...
                            if (region.size == region.desiredSize)
                                break out;
                        }
                    }
                }
            }

            // if region contains more pixels than desired...
            else if (region.size > region.desiredSize)
            {
                // and the region has neighbours
                if (region.boundary.size() > 0)
                {
                    // choose a neighbour to off load extra pixels to
                    Region neighbour = regions.regionMap.get(region.boundary.remove(rand.nextInt(region.boundary.size())).otherRegionId);

                    ArrayList<BoundaryPixel> adjustedBoundary = new ArrayList<>();
                    // iterate over the boundary neighbour's boundary pixels...
                    for (BoundaryPixel boundaryPixel : neighbour.boundary)
                    {
                        // and then for those pixels which are of the current region, convert to the neighbour region
                        if (boundaryPixel.otherRegionId == region.id)
                        {
                            map[boundaryPixel.x][boundaryPixel.y] = neighbour.id;
                            neighbour.size++;
                            region.size--;
                            // stop when we reach the region's desired size.
                            if (region.size == region.desiredSize)
                                break;
                        }
                        else
                        {
                            adjustedBoundary.add(boundaryPixel);
                        }
                    }
                    neighbour.boundary = adjustedBoundary;
                }
            }
        }

    }

    /**
     * identifies the area, starting at the given point, in which adjacent pixels are of the same region id.
     * 
     * @param map
     * @param isolatedRegionMap
     *            cells identifying which area that the corresponding map cell belongs
     * @param width
     * @param height
     * @param point
     *            the starting point of the area to be identified
     * @param isolatedRegionId
     *            the id of the region to assign cells with
     * @return the size of the identified area
     */
    private static int identifyEnclosedArea(int[][] map, int[][] isolatedRegionMap, int width, int height, Point point, final int isolatedRegionId)
    {
        ArrayList<Point> stack = new ArrayList<Point>();
        final int EXPECTED_REGION_ID = map[point.x][point.y];
        stack.add(point);
        int size = 0;

        while (stack.size() > 0)
        {
            Point p = stack.remove(stack.size() - 1);
            int x = p.x;
            int y = p.y;
            if (y < 0 || y > height - 1 || x < 0 || x > width - 1 || isolatedRegionMap[x][y] > 0)
                continue;
            int val = map[x][y];
            if (val == EXPECTED_REGION_ID)
            {
                isolatedRegionMap[x][y] = isolatedRegionId;
                size++;
                stack.add(new Point(x + 1, y));
                stack.add(new Point(x - 1, y));
                stack.add(new Point(x, y + 1));
                stack.add(new Point(x, y - 1));
            }
        }

        return size;
    }

}

Giải thích (từ ý kiến)

Thuật toán khá đơn giản: Trước tiên, khởi tạo bản đồ với các trọng số ngẫu nhiên, chọn pixel hạt ngẫu nhiên cho từng vùng của quốc gia. Thứ hai "phát triển" từng khu vực bằng cách cố gắng yêu cầu các pixel liền kề không được yêu cầu. Điều này xảy ra khi trọng lượng của pixel hiện tại vượt quá trọng lượng không xác nhận.

Mỗi pixel trong một khu vực làm tăng trọng lượng của nó mỗi chu kỳ tăng trưởng. Ngoài ra, nếu một khu vực có hàng xóm thì nếu khu vực hiện tại được xem xét có ít pixel hơn mong muốn, thì nó sẽ đánh cắp các pixel từ hàng xóm của nó nếu hàng xóm có nhiều pixel hơn mong muốn. Nếu khu vực hiện tại có nhiều pixel hơn vùng lân cận thì nó sẽ chọn ngẫu nhiên một vùng lân cận và sau đó cung cấp tất cả các pixel dư cho vùng lân cận đó. Khi tất cả các vùng có kích thước chính xác, thì giai đoạn thứ ba xảy ra để xác định và chuyển đổi bất kỳ vùng nào đã bị tách và không còn liên tục.

Chỉ có phần tách lớn nhất của vùng được giữ và các phần tách khác được chuyển đổi thành các pixel không có yêu cầu và pha thứ hai bắt đầu lại. Điều này lặp lại cho đến khi tất cả các pixel trong một vùng liền kề và tất cả các vùng có kích thước chính xác.


Thật tuyệt! bạn có thể giải thích một chút về thuật toán của bạn hoạt động như thế nào không?
Arnaud

1
Tuyệt quá! Tôi nghĩ rằng chỉ có màu sắc có thể là "Trái đất" hơn (cái thứ ba giống như Dark Purple Age of Camelot: P). Tôi nghĩ rằng bạn đã quên hình ảnh cho ví dụ cuối cùng của bạn.
Sở thích của Calvin

@ Calvin'sHob sở thích phải chọn màu ngẫu nhiên ... có vẻ như máy tính của tôi có xu hướng màu tím: P. Rất tiếc tôi đã quên ví dụ thứ ba ... sẽ tạo và cập nhật.
Moogie

12

Thử thách này là khó khăn đáng ngạc nhiên. Tôi đã viết một trình tạo bản đồ bằng Python bằng Pygame. Chương trình phát triển vùng màu thành không gian trống và kết quả là hình ảnh có thể trông giống như bản đồ (nếu bạn nheo mắt).

Thuật toán của tôi không phải lúc nào cũng hoàn thành các quốc gia vì khu vực còn lại có thể không có đủ không gian, nhưng tôi nghĩ nó mang lại hiệu quả thú vị và tôi sẽ không dành thời gian cho nó nữa. Các mảng màu xanh kỳ lạ còn lại có thể được coi là hồ lớn và các đặc điểm màu xanh lốm đốm giữa các quốc gia là những con sông đánh dấu biên giới (đó là một tính năng, không phải là một lỗi!).

Để so sánh với Super Chafouin, tôi đã sử dụng các ví dụ tham số của họ.

Thông số: 380 260 233 420 1300 3511 4772 5089 9507 22107 25117 26744

Kiểm tra tiêu chuẩn

Thông số: 380 260 8 5 6 7 8 4 5 6 7 9 4 6 9 5 8 7 5

Ví dụ 2

Thời kỳ đen tối của lạc đà (213 307 1 1 1)

Ví dụ 3

Ví dụ lớn hơn của tôi: (640 480 6 1 7 2 9 3 4 5 6 1 9 8 7 44 3 1 9 4 5 6 7 2 3 4 9 3 4 5 9 8 7 5 6 1 2 1 2 1 2 6 7 8 9 63 3)

Ví dụ lớn hơn của tôi về Đông Âu?

Ví dụ này trông hơi giống Đông Âu?

Một ví dụ với nhiều quốc gia hơn: 640 480 6 1 7 2 9 3 4 5 6 1 9 8 7 44 3 1 9 4 5 6 7 2 3 4 9 3 4 5 9 8 7 5 6 1 2 1 2 1 2 6 7 8 9 63 5 33 11 88 2 7 9 5 6 2 5 7

Nhiều quốc gia với màu sắc êm dịu

Tôi đã thay đổi trình tạo màu với ví dụ này colors = [(80+ri(100), 80+ri(100), 80+ri(100)) for c in counts]để có được phạm vi êm dịu hơn (và giống như bản đồ).

Mã Python:

from pygame.locals import *
import pygame, sys, random

BACK = (0,0,200)
ORTH = [(-1,0), (1,0), (0,-1), (0,1)]
PI = 3.141592

random.seed(9999)
def ri(n):
    return int(random.random() * n)

args = [int(v) for v in sys.argv[1:]]
W, H = args[:2]
shares = sorted(args[2:])
ratio = float(W*H) / sum(shares)
counts = [int(s*ratio) for s in shares]
for i in range(W*H - sum(counts)):
    counts[i] += 1

colors = [(2+ri(250), 2+ri(250), 2+ri(250)) for c in counts]
countries = range(len(counts))
random.shuffle(countries)

border = ( set((x,y) for x in (0,W-1) for y in range(H)) |
            set((x,y) for x in range(W) for y in (0,H-1)) )

screen = pygame.display.set_mode((W,H))
screen.fill(BACK)
pix = screen.set_at
def look(p):
    if 0 <= p[0] < W and 0 <= p[1] < H:
        return screen.get_at(p)
    else:
        return None

clock = pygame.time.Clock()

while True:
    dt = clock.tick(300)
    pygame.display.flip()

    if countries:
        country = countries.pop()
        color = colors[country]
        if not countries:
            color = (20,20,200)  # last fill color to be water
        count = counts[country]
        frontier = set()
        plotted = 0
        loc = border.pop()
        while plotted < count:
            pix(loc, color)
            if plotted % 50 == 0:
                pygame.display.flip()
            plotted += 1
            direc = [(loc[0]+dx, loc[1]+dy) for dx,dy in ORTH]
            for dloc in direc:
                if look(dloc) == BACK:
                    frontier.add(dloc)
            border |= frontier
            if frontier:
                loc = frontier.pop()
                border.discard(loc)
            else:
                print 'Country %s cover %u of %u' % (
                    shares[country], plotted, count)
                break
        if not countries:
            fn = 'mapper%u.png' % ri(1000)
            pygame.image.save(screen, fn)

    for event in pygame.event.get():
        if event.type == QUIT: sys.exit(0)
        if not hasattr(event, 'key'): continue
        if event.key == K_ESCAPE: sys.exit(0)

Không chắc chắn rằng nó tôn trọng quy tắc "any pixel in the region can be reached from any other by staying within the region and only moving orthogonally". Tôi thấy các pixel bị cô lập?
Arnaud

Thuật toán đáp ứng quy tắc liên tục mà bạn đã trích dẫn nhưng thất bại trong các lĩnh vực khác. Những pixel bị cô lập đó là "lỗ hổng" ở quốc gia nơi nền hiển thị xuyên qua. Do hiệu ứng này và các quốc gia khác, mỗi quốc gia trong mỗi lần chạy sẽ không có tất cả các pixel được tạo. Một số quốc gia bỏ lỡ hầu hết các pixel của họ. Nó không đáp ứng tất cả các quy tắc như được chỉ định nhưng tôi nghĩ đó là một kết quả thú vị. Thuật toán sẽ cần công việc quan trọng để tạo ra một bản đồ hoàn hảo.
Logic Knight

Về mặt kỹ thuật là trái với quy tắc nhưng nó vẫn khá tuyệt. Tôi đã thử một cái gì đó như thế này sau khi tôi đặt câu hỏi và có vấn đề tương tự. Nó khó hơn tôi nghĩ!
Sở thích của Calvin

8

Hãy lười biếng và điều chỉnh câu trả lời của tôi từ câu hỏi này !

  1. Thuật toán tính toán một "đường dẫn rắn" bắt đầu từ góc trên bên trái lấp đầy toàn bộ hình chữ nhật. Con rắn chỉ có thể đi lên, xuống, trái, phải.

  2. Con đường rắn được theo dõi và được lấp đầy với màu đầu tiên, sau đó là màu thứ hai, v.v ... có tính đến tỷ lệ phần trăm màu

  3. Thuật toán này tạo ra rất nhiều đường thẳng; để cải thiện nó, tôi phát hiện ra chúng và thay thế chúng bằng "sóng" giữ cùng một lượng pixel.

Thông số: 380 260 233 420 1300 3511 4772 5089 9507 22107 25117 26744

nhập mô tả hình ảnh ở đây

Thông số: 380 260 8 5 6 7 8 4 5 6 7 9 4 6 9 5 8 7 5

nhập mô tả hình ảnh ở đây

Thời kỳ đen tối của lạc đà (213 307 1 1 1)

nhập mô tả hình ảnh ở đây

Mật mã:

package map;

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Random;

import javax.imageio.ImageIO;


public class GenMap2 {

    private enum State { NO, YES, SHIFT };
    public final static int TOP = 1, BOTTOM = 2, LEFT = 4, RIGHT = 8;
    enum Action { ADD_LINE_TOP, ADD_LINE_LEFT, DOUBLE_SIZE, CREATE};

    public static void main(String[] args) throws IOException {

        int w = Integer.parseInt(args[0]), h = Integer.parseInt(args[1]);
        List<Integer> areas = new ArrayList<Integer>();
        int total = 0;
        for (int i = 2; i < args.length; i++) {
            int area = Integer.parseInt(args[i]);
            areas.add(area);
            total += area;
        }
        Collections.sort(areas);
        Collections.reverse(areas);
        int [][] tab = build(w, h);

        BufferedImage dest = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
        int [] black = {0, 0, 0};
        for (int j = 0; j < dest.getHeight(); j++) {
            for (int i = 0; i < dest.getWidth(); i++) {
                dest.getRaster().setPixel(i, j, black);
            }
        }

        int x = 0, y = -1;
        int go = BOTTOM, previous = BOTTOM;

        List<Color> colors = new ArrayList<Color>();
        Random rand = new Random(0); // prog must be deterministic
        while (colors.size() < areas.size()) {
            Color c = new Color(rand.nextInt(256), rand.nextInt(256), rand.nextInt(256));
            boolean ok = true;
            for (Color existing : colors) {
                if (existing.equals(c)) {
                    ok = false;
                    break;
                }
            }
            if (ok) {
                colors.add(c);
            }
        }

        int [][] map = new int[w][h];
        int cpt = 0;
        while (true) {
            if (go == BOTTOM) y++;
            if (go == TOP) y--;
            if (go == LEFT) x--;
            if (go == RIGHT) x++;

            int tmp = (int)(((long)cpt) * total / (w * h));
            int i = 0;
            for (i = 0; i < areas.size(); i++) {
                int area = areas.get(i);
                if (tmp < area) {
                    break;
                }
                tmp -= area;
            }

            map[x][y] = i;

            previous = go;

            go = -1;
            if ((tab[x][y] & TOP) != 0 && previous != BOTTOM) go = TOP;
            if ((tab[x][y] & BOTTOM) != 0 && previous != TOP) go = BOTTOM;
            if ((tab[x][y] & LEFT) != 0 && previous != RIGHT) go = LEFT;
            if ((tab[x][y] & RIGHT) != 0 && previous != LEFT) go = RIGHT;
            if (go == -1) break;
            cpt++;
        }

        String [] src0 = srcPattern(16);
        String [] repl0 = destPattern(16);
        while (findPattern(map, src0, Arrays.asList(repl0, flip(repl0)))){}
        while (findPattern(map, rotate(src0), Arrays.asList(rotate(repl0), rotate(flip(repl0))))){}
        String [] src1 = srcPattern(8);
        String [] repl1 = destPattern(8);
        while (findPattern(map, src1, Arrays.asList(repl1, flip(repl1)))){}
        while (findPattern(map, rotate(src1), Arrays.asList(rotate(repl1), rotate(flip(repl1))))){}
        String [] src2 = srcPattern(4);
        String [] repl2 = destPattern(4);
        while (findPattern(map, src2, Arrays.asList(repl2, flip(repl2)))){}
        while (findPattern(map, rotate(src2), Arrays.asList(rotate(repl2), rotate(flip(repl2))))){}


        for (y = 0; y < h; y++) {
            for (x = 0; x < w; x++) {
                Color c = colors.get(map[x][y]);
                dest.getRaster().setPixel(x, y, new int[] {c.getRed(), c.getGreen(), c.getBlue()});
            }
        }

        ImageIO.write(dest, "png", new FileOutputStream("map.png"));
    }

    private static Random randPat = new Random(0);


    private static String [] srcPattern(int size) {
        String [] ret = new String[size*2];
        for (int i = 0; i < size*2; i++) {
            ret[i] = "";
            for (int j = 0; j < size*4; j++) {
                ret[i] += i < size ? "1" : "2";
            }
        }
        return ret;
    }

    private static String [] destPattern(int size) {
        String [] ret = new String[size*2];
        for (int i = 0; i < size*2; i++) {
            ret[i] = "";
            for (int j = 0; j < size*2; j++) {
                //int target = (int)((1 + Math.sin(j * Math.PI * .5/ size) * .4) * size);
                int target = (int)((1 + (Math.cos(j * Math.PI/ size) - 1) * .2) * size);
                ret[i] += (i < target)  ? '1' : '2';
            }
        }

        for (int i = 0; i < size*2; i++) {
            for (int j = 0; j < size*2; j++) {
                ret[i] += ret[size*2 - 1 - i].charAt(size*2 - 1 - j) == '1' ? '2' : '1';
            }
        }
        return ret;
    }
    private static String [] flip(String [] pat) {
        String [] ret = new String[pat.length];
        for (int i = 0; i < ret.length; i++) {
            ret[i] = new StringBuilder(pat[i]).reverse().toString();

        }
        return ret;
    }
    private static String [] rotate(String [] pat) {
        String [] ret = new String[pat[0].length()];
        for (int i = 0; i < ret.length; i++) {
            ret[i] = "";
            for (int j = 0; j < pat.length; j++) {
                ret[i] += pat[j].charAt(i);
            }
        }
        return ret;
    }

    private static boolean findPattern(int [][] map, String [] src, List<String []> dest) {
        for (int y = 0; y < map[0].length - src.length; y++) {
            for (int x = 0; x < map.length - src[0].length(); x++) {
                int c1 = -1, c2 = -1;
                boolean wrong = false;
                for (int y1 = 0; y1 < src.length; y1++) {
                    for (int x1 = 0; x1 < src[0].length(); x1++) {
                        if (src[y1].charAt(x1) == '1') {
                            if (c1 == -1) {
                                c1 = map[x+x1][y+y1];
                            } else {
                                if (c1 != map[x+x1][y+y1]) {
                                    wrong = true;
                                }
                            }
                        }
                        if (src[y1].charAt(x1) == '2') {
                            if (c2 == -1) {
                                c2 = map[x+x1][y+y1];
                            } else {
                                if (c2 != map[x+x1][y+y1]) {
                                    wrong = true;
                                }
                            }
                        }
                        if (c1 != -1 && c1 == c2) wrong = true;
                        if (wrong) break;
                    }
                    if (wrong) break;
                }
                if (!wrong) {
                    System.out.println("Found match at " + x + " " + y);
                    String [] repl = dest.get(randPat.nextInt(dest.size()));
                    for (int y1 = 0; y1 < src.length; y1++) {
                        for (int x1 = 0; x1 < src[0].length(); x1++) {
                            map[x+x1][y+y1] = repl[y1].charAt(x1) == '1' ? c1 : c2;

                        }
                    }
                    return true;
                }
            }
        }           
        return false;
    }

    public static int [][] build(int width, int height) {
        List<Action> actions = new ArrayList<Action>();
        while (height>1 && width>1) {
            if (height % 2 == 1) {
                height--;
                actions.add(Action.ADD_LINE_TOP);
            }
            if (width % 2 == 1) {
                width--;                
                actions.add(Action.ADD_LINE_LEFT);
            }
            if (height%2 == 0 && width%2 == 0) {
                actions.add(Action.DOUBLE_SIZE);
                height /= 2;
                width /= 2;
            }
        }
        actions.add(Action.CREATE);
        Collections.reverse(actions);
        int [][] tab = null;
        for (Action action : actions) {
            if (action == Action.CREATE) {
                tab = new int[width][height];
                if (height >= width) {
                    for (int i = 0; i < height-1; i++) {
                        tab[0][i] = TOP|BOTTOM;
                    }
                    tab[0][height-1] = TOP;
                } else {
                    tab[0][0] = TOP|RIGHT;
                    for (int i = 1; i < width-1; i++) {
                        tab[i][0] = RIGHT|LEFT;
                    }
                    tab[width-1][0] = LEFT;

                }
            }
            if (action == Action.DOUBLE_SIZE) {
                tab = doubleTab(tab);
            }
            if (action == Action.ADD_LINE_TOP) {
                int [][] tab2 = new int[tab.length][tab[0].length+1];
                for (int i = 0; i < tab.length; i++) {
                    for (int j = 0; j < tab[0].length; j++) {
                        tab2[i][j+1] = tab[i][j];
                    }
                }
                tab2[0][0] = BOTTOM|RIGHT;
                for (int i = 1; i < tab.length-1; i++) {
                    tab2[i][0] = RIGHT|LEFT;
                }
                tab2[tab.length-1][0] = TOP|LEFT;
                mirror(tab2);
                tab = tab2;
            }
            if (action == Action.ADD_LINE_LEFT) {
                int [][] tab2 = new int[tab.length+1][tab[0].length];
                for (int i = 0; i < tab.length; i++) {
                    for (int j = 0; j < tab[0].length; j++) {
                        tab2[i+1][j] = tab[i][j];
                    }
                }
                tab2[0][0] = BOTTOM|RIGHT;
                tab2[1][0] |= LEFT;
                tab2[1][0] -= TOP;
                for (int i = 1; i < tab[0].length-1; i++) {
                    tab2[0][i] = TOP|BOTTOM;
                }
                tab2[0][tab[0].length-1] = TOP|BOTTOM;
                flip(tab2);
                tab = tab2;
            }

        }

        return tab;
    }

    private static void mirror(int [][] tab) {
        for (int i = 0; i < tab.length/2; i++) {
            for (int j = 0; j < tab[0].length; j++) {
                int tmp = tab[tab.length - 1 - i][j];
                tab[tab.length - 1 - i][j] = tab[i][j];
                tab[i][j] = tmp;
            }
        }
        for (int i = 0; i < tab.length; i++) {
            for (int j = 0; j < tab[0].length; j++) {
                if ((tab[i][j] & LEFT)!=0 && (tab[i][j] & RIGHT)==0) {
                    tab[i][j] -= LEFT; tab[i][j] |= RIGHT;
                } else if ((tab[i][j] & RIGHT)!=0 && (tab[i][j] & LEFT)==0) {
                    tab[i][j] -= RIGHT; tab[i][j] |= LEFT;
                }
            }
        }
    }

    private static void flip(int [][] tab) {
        for (int i = 0; i < tab.length; i++) {
            for (int j = 0; j < tab[0].length/2; j++) {
                int tmp = tab[i][tab[0].length - 1 - j];
                tab[i][tab[0].length - 1 - j] = tab[i][j];
                tab[i][j] = tmp;
            }
        }
        for (int i = 0; i < tab.length; i++) {
            for (int j = 0; j < tab[0].length; j++) {
                if ((tab[i][j] & TOP)!=0 && (tab[i][j] & BOTTOM)==0) {
                    tab[i][j] -= TOP; tab[i][j] |= BOTTOM;
                } else if ((tab[i][j] & BOTTOM)!=0 && (tab[i][j] & TOP)==0) {
                    tab[i][j] -= BOTTOM; tab[i][j] |= TOP;
                }
            }
        }
    }


    public static int [][] doubleTab(int [][] tab) {
        boolean [][] shiftTop = new boolean[tab.length][], 
                shiftLeft = new boolean[tab.length][],
                shiftBottom = new boolean[tab.length][],
                shiftRight = new boolean[tab.length][];
        for (int i = 0; i < tab.length; i++) {
            shiftTop[i] = new boolean[tab[i].length];
            shiftLeft[i] = new boolean[tab[i].length];
            shiftBottom[i] = new boolean[tab[i].length];
            shiftRight[i] = new boolean[tab[i].length];
        }

        int x = 0, y = -1;
        for (int i = 0; i < tab.length; i++) {
            if ((tab[i][0] & TOP) != 0) {
                x = i;
            }
        }
        int go = BOTTOM, previous = BOTTOM;
        boolean init = false;
        while (true) {
            if (go == BOTTOM) y++;
            if (go == TOP) y--;
            if (go == LEFT) x--;
            if (go == RIGHT) x++;

            previous = go;

            go = -1;
            if ((tab[x][y] & TOP) != 0 && previous != BOTTOM) go = TOP;
            if ((tab[x][y] & BOTTOM) != 0 && previous != TOP) go = BOTTOM;
            if ((tab[x][y] & LEFT) != 0 && previous != RIGHT) go = LEFT;
            if ((tab[x][y] & RIGHT) != 0 && previous != LEFT) go = RIGHT;
            if (previous == BOTTOM) {
                shiftTop[x][y] = y==0 ? init : shiftBottom[x][y-1];
            }
            if (previous == TOP) {
                shiftBottom[x][y] = shiftTop[x][y+1];
            }
            if (previous == RIGHT) {
                shiftLeft[x][y] = shiftRight[x-1][y];
            }
            if (previous == LEFT) {
                shiftRight[x][y] = shiftLeft[x+1][y];       
            }
            if (go == -1) break;

            if (previous == BOTTOM && go == LEFT) {
                shiftLeft[x][y] = !shiftTop[x][y];
            }
            if (previous == BOTTOM && go == RIGHT) {
                shiftRight[x][y] = shiftTop[x][y];
            }
            if (previous == BOTTOM && go == BOTTOM) {
                shiftBottom[x][y] = shiftTop[x][y];
            }


            if (previous == TOP && go == LEFT) {
                shiftLeft[x][y] = shiftBottom[x][y];
            }
            if (previous == TOP && go == RIGHT) {
                shiftRight[x][y] = !shiftBottom[x][y];
            }
            if (previous == TOP && go == TOP) {
                shiftTop[x][y] = shiftBottom[x][y];
            }

            if (previous == RIGHT && go == TOP) {
                shiftTop[x][y] = !shiftLeft[x][y];
            }
            if (previous == RIGHT && go == BOTTOM) {
                shiftBottom[x][y] = shiftLeft[x][y];
            }
            if (previous == RIGHT && go == RIGHT) {
                shiftRight[x][y] = shiftLeft[x][y];
            }

            if (previous == LEFT && go == TOP) {
                shiftTop[x][y] = shiftRight[x][y];
            }
            if (previous == LEFT && go == BOTTOM) {
                shiftBottom[x][y] = !shiftRight[x][y];
            }
            if (previous == LEFT && go == LEFT) {
                shiftLeft[x][y] = shiftRight[x][y];
            }
        }
        int [][] tab2 = new int[tab.length * 2][];
        for (int i = 0; i < tab2.length; i++) {
            tab2[i] = new int[tab[0].length * 2];
        }

        for (int i = 0; i < tab.length; i++) {
            for (int j = 0; j < tab[0].length; j++) {
                State left = State.NO, right = State.NO, top = State.NO, bottom = State.NO; 
                if ((tab[i][j] & LEFT) != 0) {
                    left = shiftLeft[i][j] ? State.SHIFT : State.YES;
                }
                if ((tab[i][j] & TOP) != 0) {
                    top = shiftTop[i][j] ? State.SHIFT : State.YES;
                }
                if ((tab[i][j] & RIGHT) != 0) {
                    right = shiftRight[i][j] ? State.SHIFT : State.YES;
                }
                if ((tab[i][j] & BOTTOM) != 0) {
                    bottom = shiftBottom[i][j] ? State.SHIFT : State.YES;
                }

                int [] comp = compute(left, top, right, bottom);
                tab2[i*2][j*2] = comp[0];
                tab2[i*2+1][j*2] = comp[1];
                tab2[i*2][j*2+1] = comp[2];
                tab2[i*2+1][j*2+1] = comp[3];
            }
        }
        return tab2;
    }

    private static int [] compute(State left, State top, State right, State bottom) {
        //   |
        // --+
        //
        if (left == State.YES && top == State.SHIFT) {
            return new int[] {LEFT|BOTTOM, TOP|BOTTOM, TOP|RIGHT, TOP|LEFT};// "v^>^";
        }
        if (left == State.SHIFT && top == State.YES) {
            return new int[] {TOP|RIGHT, LEFT|BOTTOM, LEFT|RIGHT, LEFT|TOP}; //"^<>^";
        }
        //   
        // --+
        //   |
        if (left == State.YES && bottom == State.YES) {
            return new int[] {LEFT|RIGHT, LEFT|BOTTOM, RIGHT|BOTTOM, LEFT|TOP}; //">vv<";
        }
        if (left == State.SHIFT && bottom == State.SHIFT) {
            return new int[] {RIGHT|BOTTOM, LEFT|BOTTOM, LEFT|TOP, TOP|BOTTOM}; //">v^v";
        }
        //   |
        //   +--
        //
        if (right == State.SHIFT && top == State.SHIFT) {
            return new int [] {RIGHT|BOTTOM,LEFT|TOP,TOP|RIGHT, LEFT|RIGHT}; //" v<>>";
        }
        if (right == State.YES && top == State.YES) {
            return new int [] {TOP|BOTTOM,RIGHT|BOTTOM,TOP|RIGHT,TOP|LEFT}; //"v>>^";
        }
        //   
        //   +--
        //   |
        if (right == State.YES && bottom == State.SHIFT) {
            return new int [] {RIGHT|BOTTOM, LEFT|RIGHT, TOP|RIGHT, LEFT|BOTTOM}; //"v<>v";
        }
        if (right == State.SHIFT && bottom == State.YES) {
            return new int [] {RIGHT|BOTTOM, LEFT|BOTTOM, TOP|BOTTOM, RIGHT|TOP}; //"v<v^";
        }
        //   
        // --+--
        //   
        if (right == State.YES && left == State.YES) {
            return new int [] {LEFT|BOTTOM, RIGHT|BOTTOM, TOP|RIGHT, LEFT|TOP}; 
        }
        if (right == State.SHIFT && left == State.SHIFT) {
            return new int [] {RIGHT|BOTTOM, LEFT|BOTTOM, LEFT|TOP, RIGHT|TOP}; 
        }
        //   |
        //   +
        //   |
        if (top == State.YES && bottom == State.YES) {
            return new int [] {TOP|RIGHT, LEFT|BOTTOM, BOTTOM|RIGHT, LEFT|TOP}; 
        }
        if (top == State.SHIFT && bottom == State.SHIFT) {
            return new int [] {RIGHT|BOTTOM, LEFT|TOP, RIGHT|TOP, LEFT|BOTTOM}; 
        }
        //
        //   +--
        //
        if (right == State.YES && bottom == State.NO && left == State.NO && top == State.NO) {
            return new int [] {BOTTOM, RIGHT|BOTTOM, TOP|RIGHT, LEFT|TOP}; 
        }
        if (right == State.SHIFT && bottom == State.NO && left == State.NO && top == State.NO) {
            return new int [] {RIGHT|BOTTOM, LEFT|BOTTOM, TOP, RIGHT|TOP}; 
        }

        //   |
        //   +
        //
        if (top == State.YES && bottom == State.NO && left == State.NO && right == State.NO) {
            return new int [] {TOP|RIGHT, LEFT|BOTTOM, RIGHT, LEFT|TOP}; 
        }
        if (top == State.SHIFT && bottom == State.NO && left == State.NO && right == State.NO) {
            return new int [] {BOTTOM|RIGHT, LEFT|TOP, TOP|RIGHT, LEFT}; 
        }
        //   
        //   +
        //   |
        if (bottom == State.YES && top == State.NO && left == State.NO && right == State.NO) {
            return new int [] {RIGHT, LEFT|BOTTOM, BOTTOM|RIGHT, LEFT|TOP}; 
        }
        if (bottom == State.SHIFT && top == State.NO && left == State.NO && right == State.NO) {
            return new int [] {BOTTOM|RIGHT, LEFT, TOP|RIGHT, LEFT|BOTTOM}; 
        }
        //
        // --+
        //
        if (left == State.YES && bottom == State.NO && right == State.NO && top == State.NO) {
            return new int [] {LEFT|BOTTOM, BOTTOM, TOP|RIGHT, LEFT|TOP}; 
        }
        if (left == State.SHIFT && bottom == State.NO && right == State.NO && top == State.NO) {
            return new int [] {BOTTOM|RIGHT, LEFT|BOTTOM, LEFT|TOP, TOP}; 
        }
        return null;
    }
}

1
Trong mắt tôi, những thứ này trông không thực tế lắm. Chủ yếu là do số lượng lớn các đường thẳng ...
Beta Decay

2
@BetaDecay Vì OP chỉ định "ở bất kỳ quy mô nào", hãy tưởng tượng nó là tiểu vùng của một tiểu bang hoặc quốc gia. Sau đó, bạn có thể có nó rất bình phương, nhưng thực tế, giống như bản đồ quận của Nebraska .
Geobits

1
@Both Tôi đã thêm một số "sóng" để sửa các đường thẳng.
Arnaud

@ αγ có vẻ không thực tế, nhưng hãy nhìn vào biên giới giữa Hoa Kỳ và Canada, nó được làm chủ yếu từ một vài đường thẳng, giống với một số biên giới giữa một số quốc gia châu Phi.
dùng902383
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.