RPython (PyPy 4.0.1), 4032
RPython là một tập hợp con hạn chế của Python, có thể được dịch sang C và sau đó được biên dịch bằng RPython Toolchain. Mục đích bày tỏ của nó là để hỗ trợ việc tạo ra các thông dịch viên ngôn ngữ, nhưng nó cũng có thể được sử dụng để biên dịch các chương trình đơn giản.
Để biên dịch, tải xuống nguồn PyPy hiện tại (PyPy 4.0.1) và chạy như sau:
$ pypy /pypy-4.0.1-src/rpython/bin/rpython --opt=3 good-primes.py
Kết quả thực thi sẽ được đặt tên good-primes-c
hoặc tương tự trong thư mục làm việc hiện tại.
Ghi chú thực hiện
Bộ tạo số nguyên tố primes
là một sàng của Eratosthenes không giới hạn, sử dụng một bánh xe để tránh mọi bội số của 2 , 3 , 5 hoặc 7 . Nó cũng tự gọi mình một cách đệ quy để tạo ra giá trị tiếp theo được sử dụng để đánh dấu. Tôi khá hài lòng với máy phát điện này. Hồ sơ dòng cho thấy hai dòng chậm nhất là:
37> n += o
38> if n not in sieve:
Vì vậy, tôi không nghĩ rằng có nhiều chỗ để cải thiện, ngoài việc sử dụng một bánh xe lớn hơn.
Đối với kiểm tra "lòng tốt", đầu tiên tất cả các yếu tố của hai được loại bỏ khỏi n-1 , bằng cách sử dụng hack một chút để tìm ra sức mạnh lớn nhất trong hai yếu tố đó là một ước số (n-1 & 1-n)
. Bởi vì p-1 nhất thiết phải thậm chí cho bất kỳ số nguyên tố p> 2 nào , do đó, 2 phải là một trong những yếu tố chính khác biệt. Những gì còn lại được gửi đến is_prime_power
hàm, trong đó thực hiện những gì tên của nó ngụ ý. Kiểm tra xem một giá trị có phải là công suất nguyên tố là "gần như miễn phí" hay không, vì nó được thực hiện đồng thời với kiểm tra tính nguyên thủy, với hầu hết các hoạt động O (log p n) , trong đó p là hệ số nguyên tố nhỏ nhất của n. Phân chia thử nghiệm có vẻ hơi ngây thơ, nhưng theo thử nghiệm của tôi, đây là phương pháp nhanh nhất cho các giá trị nhỏ hơn 2 32 . Tôi tiết kiệm một chút bằng cách tái sử dụng bánh xe từ sàng. Đặc biệt:
59> while p*p < n:
60> for o in offsets:
bằng cách lặp qua một bánh xe có chiều dài 48, p*p < n
kiểm tra sẽ được bỏ qua hàng ngàn lần, với mức giá thấp, thấp không quá 48 thao tác modulo bổ sung. Nó cũng bỏ qua hơn 77% tất cả các ứng cử viên, thay vì 50% bằng cách chỉ lấy tỷ lệ cược.
Một vài kết quả đầu ra là:
3588 (987417437 - 987413849) 60.469000s
3900 (1123404923 - 1123401023) 70.828000s
3942 (1196634239 - 1196630297) 76.594000s
4032 (1247118179 - 1247114147) 80.625000s
4176 (1964330609 - 1964326433) 143.047000s
4224 (2055062753 - 2055058529) 151.562000s
Mã này cũng là Python hợp lệ và sẽ đạt 3588 ~ 3900 khi chạy với trình thông dịch PyPy gần đây.
# primes less than 212
small_primes = [
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97,101,103,107,109,113,127,131,137,139,149,151,
157,163,167,173,179,181,191,193,197,199,211]
# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
# distances between sieve values, starting from 211
offsets = [
10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]
# tabulated, mod 105
dindices =[
0,10, 2, 0, 4, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0,
0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 6, 0, 0, 2,
0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 2,
0, 6, 6, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 4, 2,
0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 6, 2,
0, 6, 0, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 8,
0, 0, 2, 0,10, 0, 0, 4, 0, 0, 0, 2, 0, 4, 2]
def primes(start = 0):
for n in small_primes[start:]: yield n
pg = primes(6)
p = pg.next()
q = p*p
sieve = {221: 13, 253: 11}
n = 211
while True:
for o in offsets:
n += o
stp = sieve.pop(n, 0)
if stp:
nxt = n/stp
nxt += dindices[nxt%105]
while nxt*stp in sieve: nxt += dindices[nxt%105]
sieve[nxt*stp] = stp
else:
if n < q:
yield n
else:
sieve[q + dindices[p%105]*p] = p
p = pg.next()
q = p*p
def is_prime_power(n):
for p in small_primes:
if n%p == 0:
n /= p
while n%p == 0: n /= p
return n == 1
p = 211
while p*p < n:
for o in offsets:
p += o
if n%p == 0:
n /= p
while n%p == 0: n /= p
return n == 1
return n > 1
def main(argv):
from time import time
t0 = time()
m = 0
p = q = 7
pgen = primes(3)
for n in pgen:
d = (n-1 & 1-n)
if is_prime_power(n/d):
p, q = q, n
if q-p > m:
m = q-p
print m, "(%d - %d) %fs"%(q, p, time()-t0)
return 0
def target(*args):
return main, None
if __name__ == '__main__':
from sys import argv
main(argv)
RPython (PyPy 4.0.1), 22596
Bài nộp này hơi khác so với các bài khác được đăng cho đến nay, ở chỗ nó không kiểm tra tất cả các số nguyên tố tốt, mà thay vào đó thực hiện các bước nhảy tương đối lớn. Một nhược điểm của việc này là các sàng không thể được sử dụng [Tôi có thể sửa được không?] , Vì vậy người ta phải hoàn toàn dựa vào kiểm tra tính nguyên thủy mà trong thực tế thì chậm hơn một chút. Cũng có một phương tiện hạnh phúc được tìm thấy giữa tốc độ tăng trưởng và số lượng giá trị được kiểm tra mỗi lần. Các giá trị nhỏ hơn nhanh hơn để kiểm tra, nhưng các giá trị lớn hơn có nhiều khả năng có khoảng trống lớn hơn.
Để xoa dịu các vị thần toán học, tôi đã quyết định đi theo một chuỗi giống như Fibonacci, có điểm bắt đầu tiếp theo là tổng của hai lần trước. Nếu không tìm thấy bản ghi mới nào sau khi kiểm tra 10 cặp, tập lệnh sẽ chuyển sang phần tiếp theo.
Một vài kết quả đầu ra là:
6420 (12519586667324027 - 12519586667317607) 0.364000s
6720 (707871808582625903 - 707871808582619183) 0.721000s
8880 (626872872579606869 - 626872872579597989) 0.995000s
10146 (1206929709956703809 - 1206929709956693663) 4.858000s
22596 (918415168400717543 - 918415168400694947) 8.797000s
Khi được biên dịch, các số nguyên 64 bit được sử dụng, mặc dù nó được giả sử ở một vài nơi có thể thêm hai số nguyên mà không bị tràn, vì vậy trong thực tế chỉ có 63 có thể sử dụng được. Khi đạt tới 62 bit đáng kể, giá trị hiện tại được giảm một nửa hai lần, để tránh tràn trong tính toán. Kết quả là tập lệnh xáo trộn thông qua các giá trị trên phạm vi 2 60 - 2 62 . Không vượt qua độ chính xác số nguyên bản cũng làm cho tập lệnh nhanh hơn khi diễn giải.
Tập lệnh PARI / GP sau đây có thể được sử dụng để xác nhận kết quả này:
isgoodprime(n) = isprime(n) && omega(n-1)==2
for(n = 918415168400694947, 918415168400717543, {
if(isgoodprime(n), print(n" is a good prime"))
})
try:
from rpython.rlib.rarithmetic import r_int64
from rpython.rtyper.lltypesystem.lltype import SignedLongLongLong
from rpython.translator.c.primitive import PrimitiveType
# check if the compiler supports long long longs
if SignedLongLongLong in PrimitiveType:
from rpython.rlib.rarithmetic import r_longlonglong
def mul_mod(a, b, m):
return r_int64(r_longlonglong(a)*b%m)
else:
from rpython.rlib.rbigint import rbigint
def mul_mod(a, b, m):
biga = rbigint.fromrarith_int(a)
bigb = rbigint.fromrarith_int(b)
bigm = rbigint.fromrarith_int(m)
return biga.mul(bigb).mod(bigm).tolonglong()
# modular exponentiation b**e (mod m)
def pow_mod(b, e, m):
r = 1
while e:
if e&1: r = mul_mod(b, r, m)
e >>= 1
b = mul_mod(b, b, m)
return r
except:
import sys
r_int64 = int
if sys.maxint == 2147483647:
mul_mod = lambda a, b, m: a*b%m
else:
mul_mod = lambda a, b, m: int(a*b%m)
pow_mod = pow
# legendre symbol (a|m)
# note: returns m-1 if a is a non-residue, instead of -1
def legendre(a, m):
return pow_mod(a, (m-1) >> 1, m)
# strong probable prime
def is_sprp(n, b=2):
if n < 2: return False
d = n-1
s = 0
while d&1 == 0:
s += 1
d >>= 1
x = pow_mod(b, d, n)
if x == 1 or x == n-1:
return True
for r in xrange(1, s):
x = mul_mod(x, x, n)
if x == 1:
return False
elif x == n-1:
return True
return False
# lucas probable prime
# assumes D = 1 (mod 4), (D|n) = -1
def is_lucas_prp(n, D):
Q = (1-D) >> 2
# n+1 = 2**r*s where s is odd
s = n+1
r = 0
while s&1 == 0:
r += 1
s >>= 1
# calculate the bit reversal of (odd) s
# e.g. 19 (10011) <=> 25 (11001)
t = r_int64(0)
while s:
if s&1:
t += 1
s -= 1
else:
t <<= 1
s >>= 1
# use the same bit reversal process to calculate the sth Lucas number
# keep track of q = Q**n as we go
U = 0
V = 2
q = 1
# mod_inv(2, n)
inv_2 = (n+1) >> 1
while t:
if t&1:
# U, V of n+1
U, V = mul_mod(inv_2, U + V, n), mul_mod(inv_2, V + mul_mod(D, U, n), n)
q = mul_mod(q, Q, n)
t -= 1
else:
# U, V of n*2
U, V = mul_mod(U, V, n), (mul_mod(V, V, n) - 2 * q) % n
q = mul_mod(q, q, n)
t >>= 1
# double s until we have the 2**r*sth Lucas number
while r:
U, V = mul_mod(U, V, n), (mul_mod(V, V, n) - 2 * q) % n
q = mul_mod(q, q, n)
r -= 1
# primality check
# if n is prime, n divides the n+1st Lucas number, given the assumptions
return U == 0
# primes less than 212
small_primes = [
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97,101,103,107,109,113,127,131,137,139,149,151,
157,163,167,173,179,181,191,193,197,199,211]
# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
indices = [
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,
107,109,113,121,127,131,137,139,143,149,151,157,
163,167,169,173,179,181,187,191,193,197,199,209]
# distances between sieve values
offsets = [
10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]
bit_lengths = [
0x00000000, 0x00000001, 0x00000003, 0x00000007,
0x0000000F, 0x0000001F, 0x0000003F, 0x0000007F,
0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF,
0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF,
0x0000FFFF, 0x0001FFFF, 0x0003FFFF, 0x0007FFFF,
0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF,
0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF,
0x0FFFFFFF, 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF]
max_int = 2147483647
# returns the index of x in a sorted list a
# or the index of the next larger item if x is not present
# i.e. the proper insertion point for x in a
def binary_search(a, x):
s = 0
e = len(a)
m = e >> 1
while m != e:
if a[m] < x:
s = m
m = (s + e + 1) >> 1
else:
e = m
m = (s + e) >> 1
return m
def log2(n):
hi = n >> 32
if hi:
return binary_search(bit_lengths, hi) + 32
return binary_search(bit_lengths, n)
# integer sqrt of n
def isqrt(n):
c = n*4/3
d = log2(c)
a = d>>1
if d&1:
x = r_int64(1) << a
y = (x + (n >> a)) >> 1
else:
x = (r_int64(3) << a) >> 2
y = (x + (c >> a)) >> 1
if x != y:
x = y
y = (x + n/x) >> 1
while y < x:
x = y
y = (x + n/x) >> 1
return x
# integer cbrt of n
def icbrt(n):
d = log2(n)
if d%3 == 2:
x = r_int64(3) << d/3-1
else:
x = r_int64(1) << d/3
y = (2*x + n/(x*x))/3
if x != y:
x = y
y = (2*x + n/(x*x))/3
while y < x:
x = y
y = (2*x + n/(x*x))/3
return x
## Baillie-PSW ##
# this is technically a probabalistic test, but there are no known pseudoprimes
def is_bpsw(n):
if not is_sprp(n, 2): return False
# idea shamelessly stolen from Mathmatica's PrimeQ
# if n is a 2-sprp and a 3-sprp, n is necessarily square-free
if not is_sprp(n, 3): return False
a = 5
s = 2
# if n is a perfect square, this will never terminate
while legendre(a, n) != n-1:
s = -s
a = s-a
return is_lucas_prp(n, a)
# an 'almost certain' primality check
def is_prime(n):
if n < 212:
m = binary_search(small_primes, n)
return n == small_primes[m]
for p in small_primes:
if n%p == 0:
return False
# if n is a 32-bit integer, perform full trial division
if n <= max_int:
p = 211
while p*p < n:
for o in offsets:
p += o
if n%p == 0:
return False
return True
return is_bpsw(n)
# next prime strictly larger than n
def next_prime(n):
if n < 2:
return 2
# first odd larger than n
n = (n + 1) | 1
if n < 212:
m = binary_search(small_primes, n)
return small_primes[m]
# find our position in the sieve rotation via binary search
x = int(n%210)
m = binary_search(indices, x)
i = r_int64(n + (indices[m] - x))
# adjust offsets
offs = offsets[m:] + offsets[:m]
while True:
for o in offs:
if is_prime(i):
return i
i += o
# true if n is a prime power > 0
def is_prime_power(n):
if n > 1:
for p in small_primes:
if n%p == 0:
n /= p
while n%p == 0: n /= p
return n == 1
r = isqrt(n)
if r*r == n:
return is_prime_power(r)
s = icbrt(n)
if s*s*s == n:
return is_prime_power(s)
p = r_int64(211)
while p*p < r:
for o in offsets:
p += o
if n%p == 0:
n /= p
while n%p == 0: n /= p
return n == 1
if n <= max_int:
while p*p < n:
for o in offsets:
p += o
if n%p == 0:
return False
return True
return is_bpsw(n)
return False
def next_good_prime(n):
n = next_prime(n)
d = (n-1 & 1-n)
while not is_prime_power(n/d):
n = next_prime(n)
d = (n-1 & 1-n)
return n
def main(argv):
from time import time
t0 = time()
if len(argv) > 1:
n = r_int64(int(argv[1]))
else:
n = r_int64(7)
if len(argv) > 2:
limit = int(argv[2])
else:
limit = 10
m = 0
e = 1
q = n
try:
while True:
e += 1
p, q = q, next_good_prime(q)
if q-p > m:
m = q-p
print m, "(%d - %d) %fs"%(q, p, time()-t0)
n, q = p, n+p
if log2(q) > 61:
q >>= 2
e = 1
q = next_good_prime(q)
elif e > limit:
n, q = p, n+p
if log2(q) > 61:
q >>= 2
e = 1
q = next_good_prime(q)
except KeyboardInterrupt:
pass
return 0
def target(*args):
return main, None
if __name__ == '__main__':
from sys import argv
main(argv)