Chúng tôi muốn biết liệu có bất kỳ kết quả xấp xỉ được biết đến cho cardinality hạn chế tối thiểu - t -cut trên đồ thị có hướng. Chúng tôi không thể tìm thấy bất kỳ kết quả như vậy trong văn học.
Vấn đề được định nghĩa như sau:
Ví dụ: Một đạo diễn đồ thị , một hàm chi phí w : E → R + 0 , hai đỉnh s , t ∈ V và một số nguyên k .
Giải: Một - t -cut, tức là một phân vùng của V thành hai bộ V 1 , V 2 sao cho s ∈ V 1 , t ∈ V 2 và số cạnh vượt qua nhiều nhất là k , tức là | { ( U , v ) ∈ E : u ∈ V 1 , v ∈ V 2 } | ≤ k .
Biện pháp (để giảm thiểu): Chi phí của việc cắt giảm:
Trong "Các vấn đề cắt giới hạn và đa tiêu chuẩn (đa) ", các phần tử tự động chứng minh rằng vấn đề này là NP-Hard mạnh ngay cả đối với các biểu đồ không có hướng.
Chúng tôi chủ yếu quan tâm đến các thuật toán xấp xỉ cho các đồ thị có hướng, nhưng kết quả gần đúng cho trường hợp không xác định cũng có thể hữu ích.
Cảm ơn bạn cho bất kỳ hiểu biết.