Tôi đã chạy một chương trình clingo ngắn báo cáo không có đồ thị mà không có TFAS, nhưng có một lỗi. Tôi đã sửa nó và bây giờ nó xác minh không có đồ thị nào mà không có TFAS cho n = 8 hoặc ít hơn. Với n = 9, nó tìm thấy cái này:
is_edge(edge(2,3)) is_edge(edge(1,4)) is_edge(edge(2,4)) is_edge(edge(3,5)) is_edge(edge(4,5)) is_edge(edge(1,6)) is_edge(edge(2,6)) is_edge(edge(3,6)) is_edge(edge(5,6)) is_edge(edge(1,7)) is_edge(edge(4,7)) is_edge(edge(5,7)) is_edge(edge(6,7)) is_edge(edge(1,8)) is_edge(edge(3,8)) is_edge(edge(4,8)) is_edge(edge(5,9)) is_edge(edge(6,9)) is_edge(edge(7,9)) is_edge(edge(2,1)) is_edge(edge(3,1)) is_edge(edge(4,3)) is_edge(edge(5,1)) is_edge(edge(5,2)) is_edge(edge(6,4)) is_edge(edge(7,2)) is_edge(edge(7,3)) is_edge(edge(8,2)) is_edge(edge(8,5)) is_edge(edge(8,6)) is_edge(edge(8,7)) is_edge(edge(9,1)) is_edge(edge(9,2)) is_edge(edge(9,3)) is_edge(edge(9,4)) is_edge(edge(9,8))
Đây là mã hóa (cố định)
% tfas.asp
#show is_edge/1.
vertex(1..n).
opp_edges(edge(A,B),edge(B,A)) :- vertex(A), vertex(B), A < B.
possible_edge(E1;E2) :- opp_edges(E1,E2).
{is_edge(E1); is_edge(E2)} = 1 :- opp_edges(E1, E2).
ntfas(E) :- possible_edge(E), not is_edge(E).
ntfas(edge(X, X)) :- vertex(X).
tfas(E) | fs(E) :- is_edge(E).
ntfas(E) :- fs(E).
broken :- ntfas(edge(A,C)), tfas(edge(A, B)), tfas(edge(B,C)).
reachable(X, Y) :- fs(edge(X, Y)), is_edge(edge(X, Y)).
reachable(X, Z) :- reachable(X, Y), fs(edge(Y, Z)), is_edge(edge(Y, Z)).
broken :- reachable(X, X).
tfas(E) :- broken, possible_edge(E).
fs(E) :- broken, possible_edge(E).
:- not broken.
Chạy nó với clingo -c n=7 tfas.asp
(Sử dụng clingo 4.2.1)
(n = 7 chỉ ra đồ thị của chính xác 7 đỉnh)
Nó sẽ trả về thỏa đáng khi và chỉ khi tồn tại một đồ thị không có TFAS trên 7 đỉnh.
Ok, tôi đã tìm ra biểu đồ nào @ G.Bach đã mô tả và mã hóa nó trong clingo (xem mô tả clingo bên dưới. Nó bắt đầu với một mô tả về biểu đồ tiện ích và tiến hành mô tả cách nối các bản sao của nó với nhau để có được đầy đủ Biểu đồ giải đấu 34 đỉnh G.Bach đang mô tả. Tôi cũng đã đính kèm mô tả biểu đồ căn cứ).
Sau đó tôi đã tiến hành chạy clingo trên biểu đồ đó và nó tuyên bố đã tìm thấy một TFAS với 241 cạnh. Nhưng tôi đã mắc một lỗi trong mã hóa đồ thị. Tôi đã sửa lỗi và clingo hiện báo cáo không thỏa đáng (nghĩa là không có TFAS).
Đây là chương trình tìm TFAS trên biểu đồ
{tfas(E)} :- is_edge(E).
:- not tfas(edge(A,C)), tfas(edge(A, B)), tfas(edge(B,C)).
reachable(X, Y) :- not tfas(edge(X, Y)), is_edge(edge(X, Y)).
reachable(X, Z) :- reachable(X, Y), not tfas(edge(Y, Z)), is_edge(edge(Y, Z)).
:- reachable(X, X).
tfas_count(N) :- N = #count{tfas(E) : tfas(E)}.
#show tfas/1.
#show tfas_count/1.
Đây là chương trình (đã cập nhật) để tạo biểu đồ của G.Bach. Tôi đã thêm các chỉ số ở cuối để kiểm tra xem biểu đồ có phải là biểu đồ giải đấu được hình thành tốt không:
gadget_vertex(0..7).
gadget_edge(0,1).
gadget_edge(0,2).
gadget_edge(0,3).
gadget_edge(0,4).
gadget_edge(1,2).
gadget_edge(1,3).
gadget_edge(1,6).
gadget_edge(1,7).
gadget_edge(2,3).
gadget_edge(2,4).
gadget_edge(2,5).
gadget_edge(2,7).
gadget_edge(3,4).
gadget_edge(3,5).
gadget_edge(3,6).
gadget_edge(4,1).
gadget_edge(4,5).
gadget_edge(4,6).
gadget_edge(4,7).
gadget_edge(5,0).
gadget_edge(5,1).
gadget_edge(5,6).
gadget_edge(6,0).
gadget_edge(6,2).
gadget_edge(6,7).
gadget_edge(7,0).
gadget_edge(7,3).
gadget_edge(7,5).
special_edge(a;b;c;d;e).
forces(a,b).
forces(b,c).
forcesn(c,a).
nforces(a,d).
forces(d,e).
forces(e,a).
relates(A,B) :- forces(A,B).
relates(A,B) :- nforces(A,B).
relates(A,B) :- forcesn(A,B).
is_se_pair(se_pair(A,B)) :- relates(A,B).
vertex_name(v(V,P)) :- gadget_vertex(V), is_se_pair(P).
matches(from(A), v(5, se_pair(A,B))) :- forces(A,B).
matches(to(A), v(1, se_pair(A,B))) :- forces(A,B).
matches(from(B), v(3, se_pair(A,B))) :- forces(A,B).
matches(to(B), v(6, se_pair(A,B))) :- forces(A,B).
matches(from(A), v(2, se_pair(A,B))) :- nforces(A,B).
matches(to(A), v(7, se_pair(A,B))) :- nforces(A,B).
matches(from(B), v(1, se_pair(A,B))) :- nforces(A,B).
matches(to(B), v(3, se_pair(A,B))) :- nforces(A,B).
matches(from(A), v(7, se_pair(A,B))) :- forcesn(A,B).
matches(to(A), v(3, se_pair(A,B))) :- forcesn(A,B).
matches(from(B), v(5, se_pair(A,B))) :- forcesn(A,B).
matches(to(B), v(1, se_pair(A,B))) :- forcesn(A,B).
same_vertex(V, V) :- vertex_name(V).
same_vertex(M, N; N, M) :- matches(X, M), matches(X, N).
already_found(v(Y,N2)) :- vertex_name(v(X,N1)), same_vertex(v(X,N1),v(Y,N2)), N1 < N2.
vertex(V) :- vertex_name(V), not already_found(V).
named_gadget_edge(edge(v(X,SE),v(Y,SE))) :- gadget_edge(X,Y), is_se_pair(SE).
from_gadget_edge_named(edge(A, B), edge(C,D)) :- named_gadget_edge(edge(C,D)), same_vertex(A,C), same_vertex(B,D), vertex(A), vertex(B).
from_gadget_edge(edge(A,B)) :- from_gadget_edge_named(edge(A,B),edge(C,D)).
is_edge(E) :- from_gadget_edge(E).
is_edge(edge(A,B)) :- vertex(A), vertex(B), A < B, not from_gadget_edge(edge(B,A)).
vertex_count(VN) :- VN = #count{vertex(V) : vertex(V)}.
edge_count(EN) :- EN = #count{is_edge(E) : is_edge(E)}.
#show vertex_count/1.
#show edge_count/1.
bidirectional :- is_edge(edge(A,B)), is_edge(edge(B,A)).
phantom_vertex :- is_edge(edge(A,B)), not vertex(A).
phantom_vertex :- is_edge(edge(A,B)), not vertex(B).
incomplete :- vertex(A), vertex(B), not is_edge(edge(A,B)), not is_edge(edge(B,A)), A != B.
#show bidirectional/0.
#show phantom_vertex/0.
#show incomplete/0.