Tôi đang làm việc trên một mô hình tỷ lệ xuất chi tối ưu trong ngành công nghiệp cờ bạc.
Vì giá danh nghĩa của vé $ 1 luôn là $ 1, chúng tôi sử dụng chiến lược giá hiệu quả trong đó Q = $ 1 trong các giải thưởng đã giành được. Nếu một trò chơi trả 50%, giá hiệu quả là 2 đô la , vì đó là những gì cần phải bỏ ra để giành được 1 đô la giải thưởng dự kiến . Khá đơn giản phải không?
Chà, tôi đã xem chú thích này trong một số nghiên cứu và không thể hiểu làm thế nào họ đạt được Điều kiện đặt hàng đầu tiên để tối đa hóa lợi nhuận từ phương trình đầu tiên:
"Đặt biểu thị chi phí hoạt động như một hàm của đơn vị số lượng, trong đó một đơn vị số lượng được xác định là một đô la trong giá trị dự kiến của giải thưởng.
Lợi nhuận ròng của cơ quan xổ số được đưa ra bởi
Trong đó là giá tính cho một đơn vị số lượng.
Điều kiện đặt hàng đầu tiên để tối đa hóa lợi nhuận có thể được viết
Nếu chi phí hoạt động cận biên là % doanh thu và tỷ lệ xuất chi là %, chúng ta có và , ngụ ý rằng độ co giãn của cầu theo giá ở mức lợi nhuận tối đa là .50 P = 2 C ' = .12 - 2.3
Để tăng tỷ lệ xuất chi để tăng lợi nhuận, phải vượt quá về giá trị tuyệt đối. " 2.3
- [Trích dẫn] Clotfelter, Charles T và Philip J Cook. "Về kinh tế xổ số nhà nước." Tạp chí viễn cảnh kinh tế: 105-19.
Trong phương trình FOC, là độ co giãn giá hiệu quả của cầu. Điều đó thường được tìm thấy bằng cách lấy đạo hàm của đối với trong phương trình đầu tiên. P Q
Làm thế nào mà họ kết thúc nơi họ đã làm? Phải có một cái gì đó tôi đang thiếu.
Tôi đang gặp khó khăn trong việc hiểu làm thế nào đạt được Điều kiện đặt hàng đầu tiên cụ thể đó - cho dù đó là kết quả của một số quy trình phái sinh trên phương trình Doanh thu thuần, hoặc nếu nó chỉ đơn giản là một điều kiện bên ngoài được áp dụng.
Cảm ơn!