CHỌN
st_astext (col)
, st_area (col, false ) AS khu vực
TỪ bảng
ST_Area (hình học) tính diện tích đa giác là WGS1984, KHÔNG chiếu vào hình cầu / hình elip có diện tích bằng nhau (nếu bạn sử dụng Hình học loại sql thay vì Địa lý). Kết quả được đo bằng đơn vị trong SRID của hình học.
ST_Area (địa lý) tính diện tích đa giác là WGS1984, VỚI chiếu vào hình cầu / hình elip có diện tích bằng nhau (nếu bạn sử dụng Địa lý loại sql thay vì Hình học). Kết quả được đo bằng mét vuông. Để đi từ m 2 đến km 2 , bạn cần chia m 2 cho 1000 2 (1000 mét trong một km - nó vuông bởi vì đó là một khu vực, vì vậy 1000 * 1000 aka 1000 2 ).
ST_Area (hình học, đúng / sai) tính diện tích (tính bằng m 2 ) với tọa độ được chiếu vào hệ tọa độ hình trụ (hình trụ bảo tồn - có ý nghĩa nếu bạn muốn tính diện tích).
Sự khác biệt giữa đúng / sai là độ chính xác.
ST_Area (geog, false) sử dụng hình cầu nhanh hơn nhưng kém chính xác hơn.
Nói, khi tôi sử dụng đa giác này:
var poly = [
[47.3612503, 8.5351944],
[47.3612252, 8.5342631],
[47.3610145, 8.5342755],
[47.3610212, 8.5345227],
[47.3606405, 8.5345451],
[47.3606350, 8.5343411],
[47.3604067, 8.5343545],
[47.3604120, 8.5345623],
[47.3604308, 8.5352457],
[47.3606508, 8.5352328],
[47.3606413, 8.5348784],
[47.3610383, 8.5348551],
[47.3610477, 8.5352063],
[47.3612503, 8.5351944]
];
Tôi nhận được kết quả sau:
ST_Area(g) = 5.21556075001092E-07
ST_Area(g, false) 6379.25032051953
ST_Area(g, true) 6350.65051177517
Tôi nghĩ phần quan trọng được lấy từ các tài liệu là đây:
Đối với metry địa lý , khu vực Cartesian 2D được xác định với các đơn vị được chỉ định bởi SRID.
Đối với geo graphy , theo khu vực mặc định được xác định trên một hình cầu với đơn vị tính bằng mét vuông .
Vì vậy, bạn cần cẩn thận để chọn địa lý , và KHÔNG hình học.
Nếu bạn sử dụng hình học, bạn CẦN sử dụng quá tải đúng / sai của ST_Area.
Trong C #, tôi nhận được ít nhiều giống như đúng với KnownCoordinateSystems.Projection.World.CylindricEqualAreaworld, và dường như là một thế giới bán kính có nghĩa là trái đất, một cái gì đó gần với WorldSpheroid.CylindumentEqualAreasphere hoặc WorldSpheroid tắt 2m 2 , vì vậy nó dường như làm việc riêng của mình.
using DotSpatial.Projections;
using DotSpatial.Topology;
namespace TestSpatial
{
static class Program
{
// https://stackoverflow.com/questions/46159499/calculate-area-of-polygon-having-wgs-coordinates-using-dotspatial
// pfff wrong...
public static void TestPolygonArea()
{
// this feature can be see visually here http://www.allhx.ca/on/toronto/westmount-park-road/25/
string feature = "-79.525542519049552,43.691278124243432 -79.525382520578987,43.691281097414787 -79.525228855617627,43.69124858593392 -79.525096151437353,43.691183664769774 -79.52472799258571,43.690927163079735 -79.525379447437814,43.690771996666641 -79.525602330675355,43.691267524226838 -79.525542519049552,43.691278124243432";
feature = "47.3612503,8.5351944 47.3612252,8.5342631 47.3610145,8.5342755 47.3610212,8.5345227 47.3606405,8.5345451 47.3606350,8.5343411 47.3604067,8.5343545 47.3604120,8.5345623 47.3604308,8.5352457 47.3606508,8.5352328 47.3606413,8.5348784 47.3610383,8.5348551 47.3610477,8.5352063 47.3612503,8.5351944";
string[] coordinates = feature.Split(' ');
// System.Array.Reverse(coordinates);
// dotspatial takes the x,y in a single array, and z in a separate array. I'm sure there's a
// reason for this, but I don't know what it is.'
double[] xy = new double[coordinates.Length * 2];
double[] z = new double[coordinates.Length];
for (int i = 0; i < coordinates.Length; i++)
{
double lon = double.Parse(coordinates[i].Split(',')[0]);
double lat = double.Parse(coordinates[i].Split(',')[1]);
xy[i * 2] = lon;
xy[i * 2 + 1] = lat;
z[i] = 0;
}
double area = CalculateArea(xy);
System.Console.WriteLine(area);
}
public static double CalculateArea(double[] latLonPoints)
{
// source projection is WGS1984
ProjectionInfo projFrom = KnownCoordinateSystems.Geographic.World.WGS1984;
// most complicated problem - you have to find most suitable projection
ProjectionInfo projTo = KnownCoordinateSystems.Projected.UtmWgs1984.WGS1984UTMZone37N;
projTo = KnownCoordinateSystems.Projected.Europe.EuropeAlbersEqualAreaConic; // 6350.9772005155683
// projTo= KnownCoordinateSystems.Geographic.World.WGS1984; // 5.215560750019806E-07
projTo = KnownCoordinateSystems.Projected.WorldSpheroid.EckertIVsphere; // 6377.26664171461
projTo = KnownCoordinateSystems.Projected.World.EckertIVworld; // 6391.5626849671826
projTo = KnownCoordinateSystems.Projected.World.CylindricalEqualAreaworld; // 6350.6506013739854
projTo = KnownCoordinateSystems.Projected.WorldSpheroid.CylindricalEqualAreasphere; // 6377.2695087222382
projTo = KnownCoordinateSystems.Projected.WorldSpheroid.EquidistantCylindricalsphere; // 6448.6818862780929
projTo = KnownCoordinateSystems.Projected.World.Polyconicworld; // 8483.7701716953889
projTo = KnownCoordinateSystems.Projected.World.EquidistantCylindricalworld; // 6463.1380225215107
projTo = KnownCoordinateSystems.Projected.World.EquidistantConicworld; // 8197.4427198320627
projTo = KnownCoordinateSystems.Projected.World.VanderGrintenIworld; // 6537.3942984174937
projTo = KnownCoordinateSystems.Projected.World.WebMercator; // 6535.5119516421109
projTo = KnownCoordinateSystems.Projected.World.Mercatorworld; // 6492.7180733950809
projTo = KnownCoordinateSystems.Projected.SpheroidBased.Lambert2; // 9422.0631835013628
projTo = KnownCoordinateSystems.Projected.SpheroidBased.Lambert2Wide; // 9422.0614012926817
projTo = KnownCoordinateSystems.Projected.TransverseMercator.WGS1984lo33; // 6760.01638841012
projTo = KnownCoordinateSystems.Projected.Europe.EuropeAlbersEqualAreaConic; // 6350.9772005155683
projTo = KnownCoordinateSystems.Projected.UtmOther.EuropeanDatum1950UTMZone37N; // 6480.7883094931021
// ST_Area(g, false) 6379.25032051953
// ST_Area(g, true) 6350.65051177517
// ST_Area(g) 5.21556075001092E-07
// prepare for ReprojectPoints (it's mutate array)
double[] z = new double[latLonPoints.Length / 2];
// double[] pointsArray = latLonPoints.ToArray();
Reproject.ReprojectPoints(latLonPoints, z, projFrom, projTo, 0, latLonPoints.Length / 2);
// assemblying new points array to create polygon
System.Collections.Generic.List<Coordinate> points =
new System.Collections.Generic.List<Coordinate>(latLonPoints.Length / 2);
for (int i = 0; i < latLonPoints.Length / 2; i++)
points.Add(new Coordinate(latLonPoints[i * 2], latLonPoints[i * 2 + 1]));
Polygon poly = new Polygon(points);
return poly.Area;
}
[System.STAThread]
static void Main(string[] args)
{
TestPolygonArea();
System.Console.WriteLine(System.Environment.NewLine);
System.Console.WriteLine(" --- Press any key to continue --- ");
System.Console.ReadKey();
}
}
}
ví dụ: bạn có được sự phù hợp gần với sai với bán kính trung bình:
// https://gis.stackexchange.com/a/816/3997
function polygonArea()
{
var poly = [
[47.3612503, 8.5351944],
[47.3612252, 8.5342631],
[47.3610145, 8.5342755],
[47.3610212, 8.5345227],
[47.3606405, 8.5345451],
[47.3606350, 8.5343411],
[47.3604067, 8.5343545],
[47.3604120, 8.5345623],
[47.3604308, 8.5352457],
[47.3606508, 8.5352328],
[47.3606413, 8.5348784],
[47.3610383, 8.5348551],
[47.3610477, 8.5352063],
[47.3612503, 8.5351944]
];
var area = 0.0;
var len = poly.length;
if (len > 2)
{
var p1, p2;
for (var i = 0; i < len - 1; i++)
{
p1 = poly[i];
p2 = poly[i + 1];
area += Math.radians(p2[0] - p1[0]) *
(
2
+ Math.sin(Math.radians(p1[1]))
+ Math.sin(Math.radians(p2[1]))
);
}
// https://en.wikipedia.org/wiki/Earth_radius#Equatorial_radius
// https://en.wikipedia.org/wiki/Earth_ellipsoid
// The radius you are using, 6378137.0 m corresponds to the equatorial radius of the Earth.
var equatorial_radius = 6378137; // m
var polar_radius = 6356752.3142; // m
var mean_radius = 6371008.8; // m
var authalic_radius = 6371007.2; // m (radius of perfect sphere with same surface as reference ellipsoid)
var volumetric_radius = 6371000.8 // m (radius of a sphere of volume equal to the ellipsoid)
// geodetic latitude φ
var siteLatitude = Math.radians(poly[0][0]);
// https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes
// https://en.wikipedia.org/wiki/World_Geodetic_System
var a = 6378137; // m
var b = 6356752.3142; // m
// where a and b are, respectively, the equatorial radius and the polar radius.
var R1 = Math.pow(a * a * Math.cos(siteLatitude), 2) + Math.pow(b * b * Math.sin(siteLatitude), 2)
var R2 = Math.pow(a * Math.cos(siteLatitude), 2) + Math.pow(b * Math.sin(siteLatitude), 2);
// https://en.wikipedia.org/wiki/Earth_radius#Radius_at_a_given_geodetic_latitude
// Geocentric radius
var R = Math.sqrt(R1 / R2);
// var merid_radius = ((a * a) * (b * b)) / Math.pow(Math.pow(a * Math.cos(siteLatitude), 2) + Math.pow(b * Math.sin(siteLatitude), 2), 3/2)
// console.log(R);
// var hrad = polar_radius + (90 - Math.abs(siteLatitude)) / 90 * (equatorial_radius - polar_radius);
var radius = mean_radius;
area = area * radius * radius / 2.0;
} // End if len > 0
// equatorial_radius: 6391.565558418869 m2
// mean_radius: 6377.287126172337m2
// authalic_radius: 6377.283923019292 m2
// volumetric_radius: 6377.271110415153 m2
// merid_radius: 6375.314923754325 m2
// polar_radius: 6348.777989748668 m2
// R: 6368.48180842528 m2
// hrad: 6391.171919886588 m2
// http://postgis.net/docs/doxygen/2.2/dc/d52/geography__measurement_8c_a1a7c48d59bcf4ed56522ab26c142f61d.html
// ST_Area(false) 6379.25032051953
// ST_Area(true) 6350.65051177517
// return area;
return area.toFixed(2);
}
WebMercator là hệ thống tọa độ được sử dụng bởi Google-Maps.
Tên chính thức của hệ tọa độ này là EPSG: 3857.
Chính xác thì PostGIS làm gì, được ghi lại ở đây:
https://postgis.net/docs/ST_Area.html
Và chi tiết về mã nguồn có thể được tìm thấy ở đây:
http://postgis.net/docs/doxygen/2.2/dc/d52/geography__measousing_8c_a1a7c48d59bcf4ed56522ab26c142f61d.html
và ở đây:
http://postgis.net/docs/doxygen/2.2/d1/dc0/lwspheroid_8c_a29d141c632f6b46587dec3a1dbe3d176.html#a29d141c632f6b46587
Albers-Projection:
Hình trụ-Diện tích-Chiếu: