Có ai biết bất kỳ công thức nào để chuyển đổi tần số ánh sáng thành giá trị RGB không?
Có ai biết bất kỳ công thức nào để chuyển đổi tần số ánh sáng thành giá trị RGB không?
Câu trả lời:
Dưới đây là giải thích chi tiết về toàn bộ quá trình chuyển đổi: http://www.fourmilab.ch/documents/specrend/ . Mã nguồn bao gồm!
Đối với những kẻ lười biếng (như tôi), đây là một triển khai trong java của mã được tìm thấy trong câu trả lời của @ user151323 (nghĩa là, chỉ là một bản dịch đơn giản từ mã pascal được tìm thấy trong Spectra Lab Report ):
static private final double Gamma = 0.80;
static private final double IntensityMax = 255;
/**
* Taken from Earl F. Glynn's web page:
* <a href="http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm">Spectra Lab Report</a>
*/
public static int[] waveLengthToRGB(double Wavelength) {
double factor;
double Red, Green, Blue;
if((Wavelength >= 380) && (Wavelength < 440)) {
Red = -(Wavelength - 440) / (440 - 380);
Green = 0.0;
Blue = 1.0;
} else if((Wavelength >= 440) && (Wavelength < 490)) {
Red = 0.0;
Green = (Wavelength - 440) / (490 - 440);
Blue = 1.0;
} else if((Wavelength >= 490) && (Wavelength < 510)) {
Red = 0.0;
Green = 1.0;
Blue = -(Wavelength - 510) / (510 - 490);
} else if((Wavelength >= 510) && (Wavelength < 580)) {
Red = (Wavelength - 510) / (580 - 510);
Green = 1.0;
Blue = 0.0;
} else if((Wavelength >= 580) && (Wavelength < 645)) {
Red = 1.0;
Green = -(Wavelength - 645) / (645 - 580);
Blue = 0.0;
} else if((Wavelength >= 645) && (Wavelength < 781)) {
Red = 1.0;
Green = 0.0;
Blue = 0.0;
} else {
Red = 0.0;
Green = 0.0;
Blue = 0.0;
}
// Let the intensity fall off near the vision limits
if((Wavelength >= 380) && (Wavelength < 420)) {
factor = 0.3 + 0.7 * (Wavelength - 380) / (420 - 380);
} else if((Wavelength >= 420) && (Wavelength < 701)) {
factor = 1.0;
} else if((Wavelength >= 701) && (Wavelength < 781)) {
factor = 0.3 + 0.7 * (780 - Wavelength) / (780 - 700);
} else {
factor = 0.0;
}
int[] rgb = new int[3];
// Don't want 0^x = 1 for x <> 0
rgb[0] = Red == 0.0 ? 0 : (int)Math.round(IntensityMax * Math.pow(Red * factor, Gamma));
rgb[1] = Green == 0.0 ? 0 : (int)Math.round(IntensityMax * Math.pow(Green * factor, Gamma));
rgb[2] = Blue == 0.0 ? 0 : (int)Math.round(IntensityMax * Math.pow(Blue * factor, Gamma));
return rgb;
}
Wavelength<=439
thành Wavelength<440
.
Ý tưởng chung:
Bước 1 và 2 có thể khác nhau.
Có một số chức năng kết hợp màu sắc, có sẵn dưới dạng bảng hoặc xấp xỉ phân tích (do @Tarc và @Haochen Xie đề xuất). Bảng là tốt nhất nếu bạn cần một kết quả chính xác suôn sẻ.
Không có không gian màu RGB duy nhất. Nhiều ma trận biến đổiCó thể sử dụng và các loại hiệu chỉnh gamma khác nhau.
Dưới đây là mã C # mà tôi đã nghĩ ra gần đây. Nó sử dụng phép nội suy tuyến tính trên bảng "người quan sát tiêu chuẩn CIE 1964" và ma trận sRGB + hiệu chỉnh gamma .
static class RgbCalculator {
const int
LEN_MIN = 380,
LEN_MAX = 780,
LEN_STEP = 5;
static readonly double[]
X = {
0.000160, 0.000662, 0.002362, 0.007242, 0.019110, 0.043400, 0.084736, 0.140638, 0.204492, 0.264737,
0.314679, 0.357719, 0.383734, 0.386726, 0.370702, 0.342957, 0.302273, 0.254085, 0.195618, 0.132349,
0.080507, 0.041072, 0.016172, 0.005132, 0.003816, 0.015444, 0.037465, 0.071358, 0.117749, 0.172953,
0.236491, 0.304213, 0.376772, 0.451584, 0.529826, 0.616053, 0.705224, 0.793832, 0.878655, 0.951162,
1.014160, 1.074300, 1.118520, 1.134300, 1.123990, 1.089100, 1.030480, 0.950740, 0.856297, 0.754930,
0.647467, 0.535110, 0.431567, 0.343690, 0.268329, 0.204300, 0.152568, 0.112210, 0.081261, 0.057930,
0.040851, 0.028623, 0.019941, 0.013842, 0.009577, 0.006605, 0.004553, 0.003145, 0.002175, 0.001506,
0.001045, 0.000727, 0.000508, 0.000356, 0.000251, 0.000178, 0.000126, 0.000090, 0.000065, 0.000046,
0.000033
},
Y = {
0.000017, 0.000072, 0.000253, 0.000769, 0.002004, 0.004509, 0.008756, 0.014456, 0.021391, 0.029497,
0.038676, 0.049602, 0.062077, 0.074704, 0.089456, 0.106256, 0.128201, 0.152761, 0.185190, 0.219940,
0.253589, 0.297665, 0.339133, 0.395379, 0.460777, 0.531360, 0.606741, 0.685660, 0.761757, 0.823330,
0.875211, 0.923810, 0.961988, 0.982200, 0.991761, 0.999110, 0.997340, 0.982380, 0.955552, 0.915175,
0.868934, 0.825623, 0.777405, 0.720353, 0.658341, 0.593878, 0.527963, 0.461834, 0.398057, 0.339554,
0.283493, 0.228254, 0.179828, 0.140211, 0.107633, 0.081187, 0.060281, 0.044096, 0.031800, 0.022602,
0.015905, 0.011130, 0.007749, 0.005375, 0.003718, 0.002565, 0.001768, 0.001222, 0.000846, 0.000586,
0.000407, 0.000284, 0.000199, 0.000140, 0.000098, 0.000070, 0.000050, 0.000036, 0.000025, 0.000018,
0.000013
},
Z = {
0.000705, 0.002928, 0.010482, 0.032344, 0.086011, 0.197120, 0.389366, 0.656760, 0.972542, 1.282500,
1.553480, 1.798500, 1.967280, 2.027300, 1.994800, 1.900700, 1.745370, 1.554900, 1.317560, 1.030200,
0.772125, 0.570060, 0.415254, 0.302356, 0.218502, 0.159249, 0.112044, 0.082248, 0.060709, 0.043050,
0.030451, 0.020584, 0.013676, 0.007918, 0.003988, 0.001091, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000
};
static readonly double[]
MATRIX_SRGB_D65 = {
3.2404542, -1.5371385, -0.4985314,
-0.9692660, 1.8760108, 0.0415560,
0.0556434, -0.2040259, 1.0572252
};
public static byte[] Calc(double len) {
if(len < LEN_MIN || len > LEN_MAX)
return new byte[3];
len -= LEN_MIN;
var index = (int)Math.Floor(len / LEN_STEP);
var offset = len - LEN_STEP * index;
var x = Interpolate(X, index, offset);
var y = Interpolate(Y, index, offset);
var z = Interpolate(Z, index, offset);
var m = MATRIX_SRGB_D65;
var r = m[0] * x + m[1] * y + m[2] * z;
var g = m[3] * x + m[4] * y + m[5] * z;
var b = m[6] * x + m[7] * y + m[8] * z;
r = Clip(GammaCorrect_sRGB(r));
g = Clip(GammaCorrect_sRGB(g));
b = Clip(GammaCorrect_sRGB(b));
return new[] {
(byte)(255 * r),
(byte)(255 * g),
(byte)(255 * b)
};
}
static double Interpolate(double[] values, int index, double offset) {
if(offset == 0)
return values[index];
var x0 = index * LEN_STEP;
var x1 = x0 + LEN_STEP;
var y0 = values[index];
var y1 = values[1 + index];
return y0 + offset * (y1 - y0) / (x1 - x0);
}
static double GammaCorrect_sRGB(double c) {
if(c <= 0.0031308)
return 12.92 * c;
var a = 0.055;
return (1 + a) * Math.Pow(c, 1 / 2.4) - a;
}
static double Clip(double c) {
if(c < 0)
return 0;
if(c > 1)
return 1;
return c;
}
}
Kết quả cho dải 400-700 nm:
Mặc dù đây là một câu hỏi cũ và đã nhận được một số câu trả lời tốt, nhưng khi tôi cố gắng triển khai chức năng chuyển đổi như vậy trong ứng dụng của mình, tôi không hài lòng với các thuật toán đã được liệt kê ở đây và đã thực hiện nghiên cứu của riêng tôi, điều này đã mang lại cho tôi một số kết quả tốt. Vì vậy, tôi sẽ đăng một câu trả lời mới.
Sau một số nghiên cứu, tôi đã xem qua bài báo này, Các phương pháp gần đúng phân tích đơn giản đối với các chức năng so khớp màu CIE XYZ và cố gắng áp dụng thuật toán điều hợp Gaussian nhiều thùy được giới thiệu trong ứng dụng của tôi. Bài báo chỉ mô tả các chức năng để chuyển đổi một bước sóng thành các giá trị XYZ tương ứng , vì vậy tôi đã triển khai một chức năng để chuyển đổi XYZ thành RGB trong không gian màu sRGB và kết hợp chúng. Kết quả là tuyệt vời và đáng chia sẻ:
/**
* Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
* monitor
*
* @param wavelength wavelength in nm
* @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
* 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
*/
public static int wavelengthToRGB(double wavelength){
double[] xyz = cie1931WavelengthToXYZFit(wavelength);
double[] rgb = srgbXYZ2RGB(xyz);
int c = 0;
c |= (((int) (rgb[0] * 0xFF)) & 0xFF) << 16;
c |= (((int) (rgb[1] * 0xFF)) & 0xFF) << 8;
c |= (((int) (rgb[2] * 0xFF)) & 0xFF) << 0;
return c;
}
/**
* Convert XYZ to RGB in the sRGB color space
* <p>
* The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
* follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
* Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
*
* @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
* @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
*/
public static double[] srgbXYZ2RGB(double[] xyz) {
double x = xyz[0];
double y = xyz[1];
double z = xyz[2];
double rl = 3.2406255 * x + -1.537208 * y + -0.4986286 * z;
double gl = -0.9689307 * x + 1.8757561 * y + 0.0415175 * z;
double bl = 0.0557101 * x + -0.2040211 * y + 1.0569959 * z;
return new double[] {
srgbXYZ2RGBPostprocess(rl),
srgbXYZ2RGBPostprocess(gl),
srgbXYZ2RGBPostprocess(bl)
};
}
/**
* helper function for {@link #srgbXYZ2RGB(double[])}
*/
private static double srgbXYZ2RGBPostprocess(double c) {
// clip if c is out of range
c = c > 1 ? 1 : (c < 0 ? 0 : c);
// apply the color component transfer function
c = c <= 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 1. / 2.4) - 0.055;
return c;
}
/**
* A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
* code here is adopted from the Listing 1 of the paper authored by Wyman et al.
* <p>
* Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
* Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
*
* @param wavelength wavelength in nm
* @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
*/
public static double[] cie1931WavelengthToXYZFit(double wavelength) {
double wave = wavelength;
double x;
{
double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);
x = 0.362 * Math.exp(-0.5 * t1 * t1)
+ 1.056 * Math.exp(-0.5 * t2 * t2)
- 0.065 * Math.exp(-0.5 * t3 * t3);
}
double y;
{
double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);
y = 0.821 * Math.exp(-0.5 * t1 * t1)
+ 0.286 * Math.exp(-0.5 * t2 * t2);
}
double z;
{
double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);
z = 1.217 * Math.exp(-0.5 * t1 * t1)
+ 0.681 * Math.exp(-0.5 * t2 * t2);
}
return new double[] { x, y, z };
}
mã của tôi được viết bằng Java 8, nhưng không khó để chuyển nó sang các phiên bản thấp hơn của Java và các ngôn ngữ khác.
transfer
DoubleUnaryOperator đang làm (do đó, lời giải thích trong nhận xét trước của tôi không đúng), vì vậy hãy kiểm tra mã mới.
1.
chỉ 1 là nhưng loại sẽ double
thay vìint
Bạn đang nói về việc chuyển đổi từ độ dài sóng sang giá trị RGB.
Nhìn vào đây, có thể sẽ trả lời câu hỏi của bạn. Thy có một tiện ích để thực hiện việc này với mã nguồn cũng như một số giải thích.
Tôi đoán tôi cũng có thể theo dõi nhận xét của mình với một câu trả lời chính thức. Tùy chọn tốt nhất là sử dụng không gian màu HSV - mặc dù màu đại diện cho bước sóng, nó không phải là so sánh một đối một.
Tôi đã thực hiện một sự phù hợp tuyến tính của các giá trị và tần số màu đã biết (loại bỏ màu đỏ và tím vì chúng kéo dài quá xa về giá trị tần số khiến chúng làm lệch mọi thứ một chút) và tôi nhận được một phương trình chuyển đổi sơ bộ.
Nó giống như
tần số (tính bằng THz) = 474 + (3/4) (Góc Huế (tính bằng độ))
Tôi đã cố gắng quan sát xung quanh và xem có ai đã nghĩ ra phương trình này hay không, nhưng tôi vẫn chưa tìm thấy gì vào tháng 5 năm 2010.
Phương pháp 1
Điều này đã được dọn dẹp và thử nghiệm phiên bản C ++ 11 của @ haochen-xie. Tôi cũng đã thêm một chức năng chuyển đổi giá trị 0 thành 1 thành bước sóng trong quang phổ khả kiến có thể sử dụng được với phương pháp này. Bạn chỉ có thể đặt bên dưới vào một tệp tiêu đề và sử dụng nó mà không cần bất kỳ phụ thuộc nào. Phiên bản này sẽ được duy trì tại đây .
#ifndef common_utils_OnlineStats_hpp
#define common_utils_OnlineStats_hpp
namespace common_utils {
class ColorUtils {
public:
static void valToRGB(double val0To1, unsigned char& r, unsigned char& g, unsigned char& b)
{
//actual visible spectrum is 375 to 725 but outside of 400-700 things become too dark
wavelengthToRGB(val0To1 * (700 - 400) + 400, r, g, b);
}
/**
* Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
* monitor
*
* @param wavelength wavelength in nm
* @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
* 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
*/
static void wavelengthToRGB(double wavelength, unsigned char& r, unsigned char& g, unsigned char& b) {
double x, y, z;
cie1931WavelengthToXYZFit(wavelength, x, y, z);
double dr, dg, db;
srgbXYZ2RGB(x, y, z, dr, dg, db);
r = static_cast<unsigned char>(static_cast<int>(dr * 0xFF) & 0xFF);
g = static_cast<unsigned char>(static_cast<int>(dg * 0xFF) & 0xFF);
b = static_cast<unsigned char>(static_cast<int>(db * 0xFF) & 0xFF);
}
/**
* Convert XYZ to RGB in the sRGB color space
* <p>
* The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
* follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
* Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
*
* @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
* @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
*/
static void srgbXYZ2RGB(double x, double y, double z, double& r, double& g, double& b) {
double rl = 3.2406255 * x + -1.537208 * y + -0.4986286 * z;
double gl = -0.9689307 * x + 1.8757561 * y + 0.0415175 * z;
double bl = 0.0557101 * x + -0.2040211 * y + 1.0569959 * z;
r = srgbXYZ2RGBPostprocess(rl);
g = srgbXYZ2RGBPostprocess(gl);
b = srgbXYZ2RGBPostprocess(bl);
}
/**
* helper function for {@link #srgbXYZ2RGB(double[])}
*/
static double srgbXYZ2RGBPostprocess(double c) {
// clip if c is out of range
c = c > 1 ? 1 : (c < 0 ? 0 : c);
// apply the color component transfer function
c = c <= 0.0031308 ? c * 12.92 : 1.055 * std::pow(c, 1. / 2.4) - 0.055;
return c;
}
/**
* A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
* code here is adopted from the Listing 1 of the paper authored by Wyman et al.
* <p>
* Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
* Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
*
* @param wavelength wavelength in nm
* @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
*/
static void cie1931WavelengthToXYZFit(double wavelength, double& x, double& y, double& z) {
double wave = wavelength;
{
double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);
x = 0.362 * std::exp(-0.5 * t1 * t1)
+ 1.056 * std::exp(-0.5 * t2 * t2)
- 0.065 * std::exp(-0.5 * t3 * t3);
}
{
double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);
y = 0.821 * std::exp(-0.5 * t1 * t1)
+ 0.286 * std::exp(-0.5 * t2 * t2);
}
{
double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);
z = 1.217 * std::exp(-0.5 * t1 * t1)
+ 0.681 * std::exp(-0.5 * t2 * t2);
}
}
};
} //namespace
#endif
Biểu đồ màu từ 375nm đến 725nm trông như sau:
Một vấn đề với phương pháp này là thực tế là nó chỉ hoạt động trong khoảng 400-700nm và bên ngoài nó giảm hẳn xuống màu đen. Một vấn đề khác là màu xanh lam hẹp hơn.
Để so sánh, dưới đây là các màu từ Câu hỏi thường gặp về Vision tại maxmax.com:
Tôi đã sử dụng nó để trực quan hóa bản đồ độ sâu trong đó mỗi pixel đại diện cho giá trị độ sâu tính bằng mét và điều này trông giống như bên dưới:
Phương pháp 2
Này được thực hiện như một phần của bitmap_image tập tin duy nhất tiêu đề chỉ thư viện bằng cách Aeash Partow:
inline rgb_t convert_wave_length_nm_to_rgb(const double wave_length_nm)
{
// Credits: Dan Bruton http://www.physics.sfasu.edu/astro/color.html
double red = 0.0;
double green = 0.0;
double blue = 0.0;
if ((380.0 <= wave_length_nm) && (wave_length_nm <= 439.0))
{
red = -(wave_length_nm - 440.0) / (440.0 - 380.0);
green = 0.0;
blue = 1.0;
}
else if ((440.0 <= wave_length_nm) && (wave_length_nm <= 489.0))
{
red = 0.0;
green = (wave_length_nm - 440.0) / (490.0 - 440.0);
blue = 1.0;
}
else if ((490.0 <= wave_length_nm) && (wave_length_nm <= 509.0))
{
red = 0.0;
green = 1.0;
blue = -(wave_length_nm - 510.0) / (510.0 - 490.0);
}
else if ((510.0 <= wave_length_nm) && (wave_length_nm <= 579.0))
{
red = (wave_length_nm - 510.0) / (580.0 - 510.0);
green = 1.0;
blue = 0.0;
}
else if ((580.0 <= wave_length_nm) && (wave_length_nm <= 644.0))
{
red = 1.0;
green = -(wave_length_nm - 645.0) / (645.0 - 580.0);
blue = 0.0;
}
else if ((645.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
{
red = 1.0;
green = 0.0;
blue = 0.0;
}
double factor = 0.0;
if ((380.0 <= wave_length_nm) && (wave_length_nm <= 419.0))
factor = 0.3 + 0.7 * (wave_length_nm - 380.0) / (420.0 - 380.0);
else if ((420.0 <= wave_length_nm) && (wave_length_nm <= 700.0))
factor = 1.0;
else if ((701.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
factor = 0.3 + 0.7 * (780.0 - wave_length_nm) / (780.0 - 700.0);
else
factor = 0.0;
rgb_t result;
const double gamma = 0.8;
const double intensity_max = 255.0;
#define round(d) std::floor(d + 0.5)
result.red = static_cast<unsigned char>((red == 0.0) ? red : round(intensity_max * std::pow(red * factor, gamma)));
result.green = static_cast<unsigned char>((green == 0.0) ? green : round(intensity_max * std::pow(green * factor, gamma)));
result.blue = static_cast<unsigned char>((blue == 0.0) ? blue : round(intensity_max * std::pow(blue * factor, gamma)));
#undef round
return result;
}
Biểu đồ của bước sóng từ 375-725nm trông như sau:
Vì vậy, điều này có thể sử dụng được nhiều hơn ở bước sóng 400-725nm. Khi tôi hình dung bản đồ độ sâu tương tự như trong phương pháp 1, tôi nhận được bên dưới. Có một vấn đề rõ ràng về những đường đen đó mà tôi nghĩ chỉ ra một lỗi nhỏ trong mã này mà tôi chưa xem xét sâu hơn. Ngoài ra, hoa violet hẹp hơn một chút trong phương pháp này, gây ra ít độ tương phản hơn cho các đối tượng ở xa.
#!/usr/bin/ghci
ångstrømsfromTHz terahertz = 2997924.58 / terahertz
tristimulusXYZfromÅngstrøms å=map(sum.map(stimulus))[
[[1056,5998,379,310],[362,4420,160,267],[-65,5011,204,262]],
[[821,5688,469,405],[286,5309,163,311]],
[[1217,4370,118,360],[681,4590,260,138]]]
where stimulus[ω,μ,ς,σ]=ω/1000*exp(-((å-μ)/if å<μ then ς else σ)^2/2)
standardRGBfromTristimulusXYZ xyz=
map(gamma.sum.zipWith(*)(gamutConfine xyz))[
[3.2406,-1.5372,-0.4986],[-0.9689,1.8758,0.0415],[0.0557,-0.2040,1.057]]
gamma u=if u<=0.0031308 then 12.92*u else (u**(5/12)*211-11)/200
[red,green,blue,black]=
[[0.64,0.33],[0.3,0.6],[0.15,0.06],[0.3127,0.3290,0]]
ciexyYfromXYZ xyz=if xyz!!1==0 then black else map(/sum xyz)xyz
cieXYZfromxyY[x,y,l]=if y==0 then black else[x*l/y,l,(1-x-y)*l/y]
gamutConfine xyz=last$xyz:[cieXYZfromxyY[x0+t*(x1-x0),y0+t*(y1-y0),xyz!!1]|
x0:y0:_<-[black],x1:y1:_<-[ciexyYfromXYZ xyz],i<-[0..2],
[x2,y2]:[x3,y3]:_<-[drop i[red,green,blue,red]],
det<-[(x0-x1)*(y2-y3)-(y0-y1)*(x2-x3)],
t <-[((x0-x2)*(y2-y3)-(y0-y2)*(x2-x3))/det|det/=0],0<=t,t<=1]
sRGBfromÅ=standardRGBfromTristimulusXYZ.tristimulusXYZfromÅngstrøms
x s rgb=concat["\ESC[48;2;",
intercalate";"$map(show.(17*).round.(15*).max 0.min 1)rgb,
"m",s,"\ESC[49m"]
spectrum=concatMap(x" ".sRGBfromÅ)$takeWhile(<7000)$iterate(+60)4000
main=putStrLn spectrum