Gần đây tôi đã phát hiện ra rằng các lỗ kiểu kết hợp với khớp mẫu trên các bản thử nghiệm mang lại trải nghiệm giống Agda khá tốt trong Haskell. Ví dụ:
{-# LANGUAGE
DataKinds, PolyKinds, TypeFamilies,
UndecidableInstances, GADTs, TypeOperators #-}
data (==) :: k -> k -> * where
Refl :: x == x
sym :: a == b -> b == a
sym Refl = Refl
data Nat = Zero | Succ Nat
data SNat :: Nat -> * where
SZero :: SNat Zero
SSucc :: SNat n -> SNat (Succ n)
type family a + b where
Zero + b = b
Succ a + b = Succ (a + b)
addAssoc :: SNat a -> SNat b -> SNat c -> (a + (b + c)) == ((a + b) + c)
addAssoc SZero b c = Refl
addAssoc (SSucc a) b c = case addAssoc a b c of Refl -> Refl
addComm :: SNat a -> SNat b -> (a + b) == (b + a)
addComm SZero SZero = Refl
addComm (SSucc a) SZero = case addComm a SZero of Refl -> Refl
addComm SZero (SSucc b) = case addComm SZero b of Refl -> Refl
addComm sa@(SSucc a) sb@(SSucc b) =
case addComm a sb of
Refl -> case addComm b sa of
Refl -> case addComm a b of
Refl -> Refl
Điều thực sự tuyệt vời là tôi có thể thay thế các mặt bên phải của các Refl -> exp
cấu kiện bằng một lỗ loại và các loại mục tiêu lỗ của tôi được cập nhật với bằng chứng, khá giống với rewrite
biểu mẫu trong Agda.
Tuy nhiên, đôi khi lỗ hổng cập nhật:
(+.) :: SNat a -> SNat b -> SNat (a + b)
SZero +. b = b
SSucc a +. b = SSucc (a +. b)
infixl 5 +.
type family a * b where
Zero * b = Zero
Succ a * b = b + (a * b)
(*.) :: SNat a -> SNat b -> SNat (a * b)
SZero *. b = SZero
SSucc a *. b = b +. (a *. b)
infixl 6 *.
mulDistL :: SNat a -> SNat b -> SNat c -> (a * (b + c)) == ((a * b) + (a * c))
mulDistL SZero b c = Refl
mulDistL (SSucc a) b c =
case sym $ addAssoc b (a *. b) (c +. a *. c) of
-- At this point the target type is
-- ((b + c) + (n * (b + c))) == (b + ((n * b) + (c + (n * c))))
-- The next step would be to update the RHS of the equivalence:
Refl -> case addAssoc (a *. b) c (a *. c) of
Refl -> _ -- but the type of this hole remains unchanged...
Ngoài ra, mặc dù các loại đích không nhất thiết phải xếp hàng bên trong bằng chứng, nhưng nếu tôi dán toàn bộ từ Agda vào thì nó vẫn kiểm tra tốt:
mulDistL' :: SNat a -> SNat b -> SNat c -> (a * (b + c)) == ((a * b) + (a * c))
mulDistL' SZero b c = Refl
mulDistL' (SSucc a) b c = case
(sym $ addAssoc b (a *. b) (c +. a *. c),
addAssoc (a *. b) c (a *. c),
addComm (a *. b) c,
sym $ addAssoc c (a *. b) (a *. c),
addAssoc b c (a *. b +. a *. c),
mulDistL' a b c
) of (Refl, Refl, Refl, Refl, Refl, Refl) -> Refl
Bạn có bất kỳ ý tưởng nào tại sao điều này xảy ra (hoặc làm thế nào tôi có thể viết lại bằng chứng một cách mạnh mẽ)?
sym
cuộc gọimulDistL'
và mã của bạn sẽ vẫn được kiểm tra.