Làm cách nào để thay thế một chương trình được viết dưới dạng một luồng chuyển đổi trạng thái theo trình tự bằng luồng scalaz?


83

Tôi đang cố gắng hiểu cách tổ chức lại một chương trình mà trước đây tôi đã viết dưới dạng một chuỗi chuyển đổi trạng thái:

Tôi có một số logic kinh doanh:

type In = Long
type Count = Int 
type Out = Count
type S = Map[Int, Count]

val inputToIn: String => Option[In] 
  = s => try Some(s.toLong) catch { case _ : Throwable => None } 

def transition(in: In): S => (S, Out) 
  = s => { val n = s.getOrElse(in, 0); (s + (in -> n+1), n+1) }

val ZeroOut: Out = 0
val InitialState: S = Map.empty 

Với những điều này, tôi muốn xây dựng một chương trình để truyền vào một số Trạng thái ban đầu (một Bản đồ trống), đọc đầu vào từ stdin , chuyển đổi nó thành In, chạy chuyển đổi trạng thái và xuất trạng thái hiện tại Svà đầu ra Outsang stdout .


Trước đây, tôi đã làm một việc như thế này:

val runOnce = StateT[IO, S, Out](s => IO.readLn.map(inputToIn) flatMap { 
  case None     => IO((s, ZeroOut))
  case Some(in) => val (t, o) = transition(in)(s)
                   IO.putStrLn(t.toString) |+| IO.putStrLn(o.toString) >| IO((t, o))   
})

Stream.continually(runOnce).sequenceU.eval(InitialState)

Tuy nhiên, tôi thực sự đang loay hoay tìm cách kết nối phương pháp này (một luồng chuyển đổi trạng thái) với luồng scalaz . Tôi bắt đầu với điều này:

type Transition = S => (S, Out)
val NoTransition: Transition = s => (s, 0)

io.stdInLines.map(inputToIn).map(_.fold(NoTransition)(transition))

Đây là kiểu: Process[Task, Transition]. Tôi thực sự không biết phải đi đâu từ đó.

  1. Làm cách nào để "chuyển vào" của tôi InitialStatevà chạy chương trình, xâu chuỗi đầu ra Sở mỗi bước làm đầu vào Scho bước tiếp theo?
  2. Làm cách nào để lấy các giá trị của SOutở mỗi bước và in chúng ra stdout (giả sử tôi có thể chuyển chúng thành chuỗi)?

Khi cố gắng sử dụng một cách đọc duy nhất, tôi cũng gặp khó khăn tương tự:

for {
  i <- Process.eval(Task.now(InitialState))
  l <- io.stdInLines.map(inputToIn)
...

Bất kỳ trợ giúp nào cũng được đánh giá rất cao!


Bây giờ tôi đã đi xa hơn một chút.

type In_ = (S, Option[In])
type Out_ = (S, Out) 

val input: Process[Task, In_] 
  = for  {
      i <- Process.emit(InitialState) 
      o <- io.stdInLines.map(inputToIn)
   } yield (i, o)

val prog =
  input.pipe(process1.collect[In_, Out_]) {
    case (s, Some(in)) => transition(in)(s)
  }).to(io.stdOutLines.contramap[Out_](_.toString))

Sau đó

prog.run.run

Nó không hoạt động: Có vẻ như nhà nước không được luồng qua suối. Thay vào đó, ở mỗi giai đoạn, trạng thái ban đầu đang được chuyển vào.


Paul Chiusano đề nghị sử dụng cách tiếp cận của process1.scan. Vì vậy, bây giờ tôi làm điều này:

type In_  = In
type Out_ = (S, Out)

val InitialOut_ = (InitialState, ZeroOut)

val program =
  io.stdInLines.collect(Function.unlift(inputToIn)).pipe(
    process1.scan[In_, Out_](InitialOut_) {
      case ((s, _), in) => transition(in)(s)
    }).to(io.stdOutLines.contramap[Out_](_.shows))

Có một vấn đề ở đây: Trong ví dụ cụ thể này, Outkiểu của tôi là monoid , vì vậy trạng thái ban đầu của tôi có thể được tạo bằng cách sử dụng danh tính của nó nhưng điều này thường không đúng như vậy. Tôi sẽ làm gì sau đó? (Tôi đoán tôi có thể sử dụng Optionnhưng điều này có vẻ như nó không cần thiết.)


Tôi nghĩ rằng tôi có một số yêu cầu tương tự ở đây: github.com/etorreborre/specs2/blob/specs2-three/common/src/main/…
Eric

Bạn sẽ không sử dụng StateTcấu trúc giống như đơn nguyên của nhà cung cấp dịch vụ cho luồng của mình chứ? type Carrier[A] = StateT[Task, S, A]; val input: Process[Carrier, Option[In]] = ...; prog.run.run(initialValue).run // prog.run is a Carrier[Unit] i.e. StateT
lmm

Câu trả lời:


1
import io.FilePath

import scalaz.stream._
import Process._
import scalaz.concurrent.Task
import Task._
import scalaz.{Show, Reducer, Monoid}
import scalaz.std.list._
import scalaz.syntax.foldable._
import scalaz.syntax.bind._
import scalaz.stream._
import io._
import scalaz.stream.text._
import Processes._
import process1.lift
import control.Functions._

/**
 * A Fold[T] can be used to pass over a Process[Task, T].
 * 
 * It has:
 *
 *  - accumulation, with an initial state, of type S, a fold action and an action to perform with the last state
 *  
 *  - side-effects with a Sink[Task, (T, S)] to write to a file for example, using the current element in the Process
 *    and the current accumulated state
 *
 * This covers many of the needs of iterating over a Scalaz stream and is composable because there is a Monoid
 * instance for Folds
 * 
 */
trait Fold[T] {
  type S

  def prepare: Task[Unit]
  def sink: Sink[Task, (T, S)]
  def fold: (T, S) => S
  def init: S
  def last(s: S): Task[Unit]

  /** create a Process1 returning the state values */
  def foldState1: Process1[T, S] =
    Processes.foldState1(fold)(init)

  /** create a Process1 returning the folded elements and the state values */
  def zipWithState1: Process1[T, (T, S)] =
    Processes.zipWithState1(fold)(init)

}

/**
 * Fold functions and typeclasses
 */
object Fold {

  /**
   * Create a Fold from a Sink with no accumulation
   */
  def fromSink[T](aSink: Sink[Task, T]) =  new Fold[T] {
    type S = Unit
    lazy val sink: Sink[Task, (T, S)] = aSink.extend[S]

    def prepare = Task.now(())
    def fold = (t: T, u: Unit) => u
    def init = ()
    def last(u: Unit) = Task.now(u)
  }

  /**
   * Transform a simple sink where the written value doesn't depend on the
   * current state into a sink where the current state is passed all the time
   * (and actually ignored)
   * Create a Fold a State function
   */
  def fromState[T, S1](state: (T, S1) => S1)(initial: S1) = new Fold[T] {
    type S = S1
    lazy val sink: Sink[Task, (T, S)] = unitSink[T, S]

    def prepare = Task.now(())
    def fold = state
    def init = initial
    def last(s: S) = Task.now(())
  }

  /**
   * Create a Fold from a side-effecting function
   */
  def fromFunction[T](f: T => Task[Unit]): Fold[T] =
    fromSink(Process.constant(f))

  /**
   * Create a Fold from a Reducer
   */
  def fromReducer[T, S1](reducer: Reducer[T, S1]): Fold[T] = new Fold[T] {
    type S = S1
    lazy val sink: Sink[Task, (T, S)] = unitSink[T, S]

    def prepare = Task.now(())
    def fold = reducer.cons
    def init = reducer.monoid.zero
    def last(s: S) = Task.now(())
  }

  /**
   * Create a Fold from a Reducer and a last action
   */
  def fromReducerAndLast[T, S1](reducer: Reducer[T, S1], lastTask: S1 => Task[Unit]): Fold[T] = new Fold[T] {
    type S = S1
    lazy val sink: Sink[Task, (T, S)] = unitSink[T, S]

    def prepare = Task.now(())
    def fold = reducer.cons
    def init = reducer.monoid.zero
    def last(s: S) = lastTask(s)
  }

  /**
   * This Sink doesn't do anything
   * It can be used to build a Fold that does accumulation only
   */
  def unitSink[T, S]: Sink[Task, (T, S)] =
    channel((tu: (T, S)) => Task.now(()))

  /**
   * Unit Fold with no side-effect or accumulation
   */
  def unit[T] = fromSink(channel((t: T) => Task.now(())))

  /**
   * Unit fold function
   */
  def unitFoldFunction[T]: (T, Unit) => Unit = (t: T, u: Unit) => u

  /** create a fold sink to output lines to a file */
  def showToFilePath[T : Show, S](path: FilePath): Sink[Task, (T, S)] =
    io.fileChunkW(path.path).pipeIn(lift(Show[T].shows) |> utf8Encode).extend[S]

  implicit class FoldOps[T](val fold: Fold[T]) {
  }

  /**
   * Monoid for Folds, where effects are sequenced
   */
  implicit def foldMonoid[T]: Monoid[Fold[T]] = new Monoid[Fold[T]] {
    def append(f1: Fold[T], f2: =>Fold[T]): Fold[T] = f1 >> f2
    lazy val zero = Fold.unit[T]
  }

  /**
   * create a new Fold sequencing the effects of 2 Folds
   */
  implicit class sequenceFolds[T](val fold1: Fold[T]) {
    def >>(fold2: Fold[T]) = new Fold[T] {
      type S = (fold1.S, fold2.S)

      def prepare = fold1.prepare >> fold2.prepare

      def sink = fold1.sink.zipWith(fold2.sink) { (f1: ((T, fold1.S)) => Task[Unit], f2: ((T, fold2.S)) => Task[Unit]) =>
        (ts: (T, S)) => {
          val (t, (s1, s2)) = ts
          (f1((t, s1)) |@| f2((t, s2)))((_,_))
        }
      }

      def fold = (t : T, s12: (fold1.S, fold2.S)) => (fold1.fold(t, s12._1), fold2.fold(t, s12._2))
      def last(s12: (fold1.S, fold2.S)) = (fold1.last(s12._1) |@| fold2.last(s12._2))((_,_))
      def init = (fold1.init, fold2.init)
    }
  }

  /**
   * Run a fold an return the last value
   */
  def runFoldLast[T](process: Process[Task, T], fold: Fold[T]): Task[fold.S] =
    fold.prepare >>
    logged(process |> fold.zipWithState1).drainW(fold.sink).map(_._2).runLastOr(fold.init)

  /**
   * Run a Fold an let it perform a last action with the accumulated state
   */
  def runFold[T](process: Process[Task, T], fold: Fold[T]): Task[Unit] =
    runFoldLast(process, fold).flatMap(fold.last)

  /**
   * Run a list of Folds, sequenced with the Fold Monoid
   */
  def runFolds[T](process: Process[Task, T], folds: List[Fold[T]]): Task[Unit] =
    runFold(process, folds.suml)

}
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.