Câu trả lời:
Tính khoảng cách giữa hai tọa độ theo vĩ độ và kinh độ , bao gồm cả việc triển khai Javascript.
Địa điểm Tây và Nam là âm. Nhớ số phút và giây nằm ngoài 60 nên S31 30 'là -31,50 độ.
Đừng quên chuyển đổi độ sang radian . Nhiều ngôn ngữ có chức năng này. Hoặc là một phép tính đơn giản : radians = degrees * PI / 180
.
function degreesToRadians(degrees) {
return degrees * Math.PI / 180;
}
function distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
var earthRadiusKm = 6371;
var dLat = degreesToRadians(lat2-lat1);
var dLon = degreesToRadians(lon2-lon1);
lat1 = degreesToRadians(lat1);
lat2 = degreesToRadians(lat2);
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadiusKm * c;
}
Dưới đây là một số ví dụ về cách sử dụng:
distanceInKmBetweenEarthCoordinates(0,0,0,0) // Distance between same
// points should be 0
0
distanceInKmBetweenEarthCoordinates(51.5, 0, 38.8, -77.1) // From London
// to Arlington
5918.185064088764
Number.prototype.toRad = function() { return this * (Math.PI / 180); };
. Hoặc, như được chỉ ra dưới đây, bạn có thể thay thế (Math.PI/2)
bằng 0,0174532925199433 (... bất cứ độ chính xác nào bạn thấy cần thiết) để tăng hiệu suất.
R
thường có nghĩa trong toán học, sau đó tra cứu các đại lượng liên quan đến Trái đất để xem các số có khớp nhau không.
earthRadiusKm
được var earthRadiusMiles = 3959;
, FYI.
Tìm kiếm haversine với Google; đây là giải pháp của tôi:
#include <math.h>
#include "haversine.h"
#define d2r (M_PI / 180.0)
//calculate haversine distance for linear distance
double haversine_km(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * d2r;
double dlat = (lat2 - lat1) * d2r;
double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
double c = 2 * atan2(sqrt(a), sqrt(1-a));
double d = 6367 * c;
return d;
}
double haversine_mi(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * d2r;
double dlat = (lat2 - lat1) * d2r;
double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
double c = 2 * atan2(sqrt(a), sqrt(1-a));
double d = 3956 * c;
return d;
}
Phiên bản C # của Haversine
double _eQuatorialEarthRadius = 6378.1370D;
double _d2r = (Math.PI / 180D);
private int HaversineInM(double lat1, double long1, double lat2, double long2)
{
return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}
private double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
Đây là một Fiddle .NET về điều này , vì vậy bạn có thể kiểm tra nó bằng Lat / Longs của riêng bạn.
Phiên bản Java của thuật toán Haversine dựa trên câu trả lời của Roman Makarov cho chủ đề này
public class HaversineAlgorithm {
static final double _eQuatorialEarthRadius = 6378.1370D;
static final double _d2r = (Math.PI / 180D);
public static int HaversineInM(double lat1, double long1, double lat2, double long2) {
return (int) (1000D * HaversineInKM(lat1, long1, lat2, long2));
}
public static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
* Math.pow(Math.sin(dlong / 2D), 2D);
double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
}
0.07149
km trong khi công thức của bạn cho tôi 0.07156
độ chính xác khoảng 99%
Đây là hàm Haversine trong Python mà tôi sử dụng:
from math import pi,sqrt,sin,cos,atan2
def haversine(pos1, pos2):
lat1 = float(pos1['lat'])
long1 = float(pos1['long'])
lat2 = float(pos2['lat'])
long2 = float(pos2['long'])
degree_to_rad = float(pi / 180.0)
d_lat = (lat2 - lat1) * degree_to_rad
d_long = (long2 - long1) * degree_to_rad
a = pow(sin(d_lat / 2), 2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_long / 2), 2)
c = 2 * atan2(sqrt(a), sqrt(1 - a))
km = 6367 * c
mi = 3956 * c
return {"km":km, "miles":mi}
Nó phụ thuộc vào mức độ chính xác mà bạn cần, nếu bạn cần độ chính xác chính xác, tốt nhất là xem xét một thuật toán sử dụng ellipsoid, thay vì hình cầu, như thuật toán của Vincenty, chính xác đến mm. http://en.wikipedia.org/wiki/Vincenty%27s_alacticm
Đây là C # (lat và long tính bằng radian):
double CalculateGreatCircleDistance(double lat1, double long1, double lat2, double long2, double radius)
{
return radius * Math.Acos(
Math.Sin(lat1) * Math.Sin(lat2)
+ Math.Cos(lat1) * Math.Cos(lat2) * Math.Cos(long2 - long1));
}
Nếu lat và long của bạn tính theo độ thì chia cho 180 / PI để chuyển đổi thành radian.
Tôi cần tính toán rất nhiều khoảng cách giữa các điểm cho dự án của mình, vì vậy tôi đã tiếp tục và cố gắng tối ưu hóa mã, tôi đã tìm thấy ở đây. Trung bình trong các trình duyệt khác nhau, triển khai mới của tôi chạy nhanh hơn 2 lần so với câu trả lời được đánh giá cao nhất.
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
Bạn có thể chơi với jsPerf của tôi và xem kết quả tại đây .
Gần đây tôi cần phải làm tương tự trong python, vì vậy đây là một triển khai python :
from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
return 12742 * asin(sqrt(a))
Và vì lợi ích của sự hoàn chỉnh: Haversine trên wiki.
Phiên bản PHP:
(Xóa tất cả deg2rad()
nếu tọa độ của bạn đã được tính bằng radian.)
$R = 6371; // km
$dLat = deg2rad($lat2-$lat1);
$dLon = deg2rad($lon2-$lon1);
$lat1 = deg2rad($lat1);
$lat2 = deg2rad($lat2);
$a = sin($dLat/2) * sin($dLat/2) +
sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2);
$c = 2 * atan2(sqrt($a), sqrt(1-$a));
$d = $R * $c;
Hàm T-SQL mà tôi sử dụng để chọn các bản ghi theo khoảng cách cho một trung tâm
Create Function [dbo].[DistanceInMiles]
( @fromLatitude float ,
@fromLongitude float ,
@toLatitude float,
@toLongitude float
)
returns float
AS
BEGIN
declare @distance float
select @distance = cast((3963 * ACOS(round(COS(RADIANS(90-@fromLatitude))*COS(RADIANS(90-@toLatitude))+
SIN(RADIANS(90-@fromLatitude))*SIN(RADIANS(90-@toLatitude))*COS(RADIANS(@fromLongitude-@toLongitude)),15))
)as float)
return round(@distance,1)
END
Nếu bạn cần một cái gì đó chính xác hơn thì hãy xem cái này .
Công thức của Vincenty là hai phương pháp lặp có liên quan được sử dụng trong trắc địa để tính khoảng cách giữa hai điểm trên bề mặt của một hình cầu, được phát triển bởi Thaddeus Vincenty (1975a) Chúng dựa trên giả định rằng hình Trái đất là một hình cầu bắt buộc, và do đó chính xác hơn các phương pháp như khoảng cách vòng tròn lớn giả định Trái đất hình cầu.
Phương thức (trực tiếp) đầu tiên tính toán vị trí của một điểm là một khoảng cách nhất định và góc phương vị (hướng) từ một điểm khác. Phương pháp thứ hai (nghịch đảo) tính khoảng cách địa lý và góc phương vị giữa hai điểm đã cho. Chúng đã được sử dụng rộng rãi trong trắc địa vì chúng chính xác trong phạm vi 0,5 mm (0,020) trên trái đất ellipsoid.
I. Về phương pháp "Breadcrumbs"
Dưới đây xem chức năng trong C có số 1 và số 2 vào tài khoản:
double calcDistanceByHaversine(double rLat1, double rLon1, double rHeading1,
double rLat2, double rLon2, double rHeading2){
double rDLatRad = 0.0;
double rDLonRad = 0.0;
double rLat1Rad = 0.0;
double rLat2Rad = 0.0;
double a = 0.0;
double c = 0.0;
double rResult = 0.0;
double rEarthRadius = 0.0;
double rDHeading = 0.0;
double rDHeadingRad = 0.0;
if ((rLat1 < -90.0) || (rLat1 > 90.0) || (rLat2 < -90.0) || (rLat2 > 90.0)
|| (rLon1 < -180.0) || (rLon1 > 180.0) || (rLon2 < -180.0)
|| (rLon2 > 180.0)) {
return -1;
};
rDLatRad = (rLat2 - rLat1) * DEGREE_TO_RADIANS;
rDLonRad = (rLon2 - rLon1) * DEGREE_TO_RADIANS;
rLat1Rad = rLat1 * DEGREE_TO_RADIANS;
rLat2Rad = rLat2 * DEGREE_TO_RADIANS;
a = sin(rDLatRad / 2) * sin(rDLatRad / 2) + sin(rDLonRad / 2) * sin(
rDLonRad / 2) * cos(rLat1Rad) * cos(rLat2Rad);
if (a == 0.0) {
return 0.0;
}
c = 2 * atan2(sqrt(a), sqrt(1 - a));
rEarthRadius = 6378.1370 - (21.3847 * 90.0 / ((fabs(rLat1) + fabs(rLat2))
/ 2.0));
rResult = rEarthRadius * c;
// Chord to Arc Correction based on Heading changes. Important for routes with many turns and U-turns
if ((rHeading1 >= 0.0) && (rHeading1 < 360.0) && (rHeading2 >= 0.0)
&& (rHeading2 < 360.0)) {
rDHeading = fabs(rHeading1 - rHeading2);
if (rDHeading > 180.0) {
rDHeading -= 180.0;
}
rDHeadingRad = rDHeading * DEGREE_TO_RADIANS;
if (rDHeading > 5.0) {
rResult = rResult * (rDHeadingRad / (2.0 * sin(rDHeadingRad / 2)));
} else {
rResult = rResult / cos(rDHeadingRad);
}
}
return rResult;
}
II. Có một cách dễ dàng hơn mà cho kết quả khá tốt.
Theo tốc độ trung bình.
Trip_distance = Trip_alusive_speed * Trip_time
Vì Tốc độ GPS được phát hiện bằng hiệu ứng Doppler và không liên quan trực tiếp đến [Lon, Lat], nên ít nhất nó có thể được coi là thứ cấp (sao lưu hoặc hiệu chỉnh) nếu không phải là phương pháp tính khoảng cách chính.
Nếu bạn đang sử dụng .NET, đừng dùng lại bánh xe. Xem System.Device.Location . Tín dụng cho fnx trong các ý kiến trong một câu trả lời khác .
using System.Device.Location;
double lat1 = 45.421527862548828D;
double long1 = -75.697189331054688D;
double lat2 = 53.64135D;
double long2 = -113.59273D;
GeoCoordinate geo1 = new GeoCoordinate(lat1, long1);
GeoCoordinate geo2 = new GeoCoordinate(lat2, long2);
double distance = geo1.GetDistanceTo(geo2);
Mã Lua này được điều chỉnh từ những thứ được tìm thấy trên Wikipedia và trong công cụ GPSbabel của Robert Lipe :
local EARTH_RAD = 6378137.0
-- earth's radius in meters (official geoid datum, not 20,000km / pi)
local radmiles = EARTH_RAD*100.0/2.54/12.0/5280.0;
-- earth's radius in miles
local multipliers = {
radians = 1, miles = radmiles, mi = radmiles, feet = radmiles * 5280,
meters = EARTH_RAD, m = EARTH_RAD, km = EARTH_RAD / 1000,
degrees = 360 / (2 * math.pi), min = 60 * 360 / (2 * math.pi)
}
function gcdist(pt1, pt2, units) -- return distance in radians or given units
--- this formula works best for points close together or antipodal
--- rounding error strikes when distance is one-quarter Earth's circumference
--- (ref: wikipedia Great-circle distance)
if not pt1.radians then pt1 = rad(pt1) end
if not pt2.radians then pt2 = rad(pt2) end
local sdlat = sin((pt1.lat - pt2.lat) / 2.0);
local sdlon = sin((pt1.lon - pt2.lon) / 2.0);
local res = sqrt(sdlat * sdlat + cos(pt1.lat) * cos(pt2.lat) * sdlon * sdlon);
res = res > 1 and 1 or res < -1 and -1 or res
res = 2 * asin(res);
if units then return res * assert(multipliers[units])
else return res
end
end
private double deg2rad(double deg)
{
return (deg * Math.PI / 180.0);
}
private double rad2deg(double rad)
{
return (rad / Math.PI * 180.0);
}
private double GetDistance(double lat1, double lon1, double lat2, double lon2)
{
//code for Distance in Kilo Meter
double theta = lon1 - lon2;
double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
dist = Math.Abs(Math.Round(rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344 * 1000, 0));
return (dist);
}
private double GetDirection(double lat1, double lon1, double lat2, double lon2)
{
//code for Direction in Degrees
double dlat = deg2rad(lat1) - deg2rad(lat2);
double dlon = deg2rad(lon1) - deg2rad(lon2);
double y = Math.Sin(dlon) * Math.Cos(lat2);
double x = Math.Cos(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) - Math.Sin(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(dlon);
double direct = Math.Round(rad2deg(Math.Atan2(y, x)), 0);
if (direct < 0)
direct = direct + 360;
return (direct);
}
private double GetSpeed(double lat1, double lon1, double lat2, double lon2, DateTime CurTime, DateTime PrevTime)
{
//code for speed in Kilo Meter/Hour
TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
double TimeDifferenceInSeconds = Math.Round(TimeDifference.TotalSeconds, 0);
double theta = lon1 - lon2;
double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
dist = rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344;
double Speed = Math.Abs(Math.Round((dist / Math.Abs(TimeDifferenceInSeconds)) * 60 * 60, 0));
return (Speed);
}
private double GetDuration(DateTime CurTime, DateTime PrevTime)
{
//code for speed in Kilo Meter/Hour
TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
double TimeDifferenceInSeconds = Math.Abs(Math.Round(TimeDifference.TotalSeconds, 0));
return (TimeDifferenceInSeconds);
}
Đây là phiên bản từ "Henry Vilinskiy" được điều chỉnh cho MySQL và Kilômét:
CREATE FUNCTION `CalculateDistanceInKm`(
fromLatitude float,
fromLongitude float,
toLatitude float,
toLongitude float
) RETURNS float
BEGIN
declare distance float;
select
6367 * ACOS(
round(
COS(RADIANS(90-fromLatitude)) *
COS(RADIANS(90-toLatitude)) +
SIN(RADIANS(90-fromLatitude)) *
SIN(RADIANS(90-toLatitude)) *
COS(RADIANS(fromLongitude-toLongitude))
,15)
)
into distance;
return round(distance,3);
END;
MySQL
đã nóiSomething is wrong in your syntax near '' on line 8
// declare distance float;
Đây là cách triển khai Swift từ câu trả lời
func degreesToRadians(degrees: Double) -> Double {
return degrees * Double.pi / 180
}
func distanceInKmBetweenEarthCoordinates(lat1: Double, lon1: Double, lat2: Double, lon2: Double) -> Double {
let earthRadiusKm: Double = 6371
let dLat = degreesToRadians(degrees: lat2 - lat1)
let dLon = degreesToRadians(degrees: lon2 - lon1)
let lat1 = degreesToRadians(degrees: lat1)
let lat2 = degreesToRadians(degrees: lat2)
let a = sin(dLat/2) * sin(dLat/2) +
sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2)
let c = 2 * atan2(sqrt(a), sqrt(1 - a))
return earthRadiusKm * c
}
tôi đã trả lời hàng đầu và sử dụng nó trong một chương trình Scala
import java.lang.Math.{atan2, cos, sin, sqrt}
def latLonDistance(lat1: Double, lon1: Double)(lat2: Double, lon2: Double): Double = {
val earthRadiusKm = 6371
val dLat = (lat2 - lat1).toRadians
val dLon = (lon2 - lon1).toRadians
val latRad1 = lat1.toRadians
val latRad2 = lat2.toRadians
val a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(latRad1) * cos(latRad2)
val c = 2 * atan2(sqrt(a), sqrt(1 - a))
earthRadiusKm * c
}
tôi đã chỉnh sửa hàm để có thể dễ dàng tạo ra các hàm có một trong hai vị trí cố định và chỉ cần một cặp lat / lon để tạo khoảng cách.
Tôi đoán bạn muốn nó dọc theo độ cong của trái đất. Hai điểm của bạn và tâm trái đất nằm trên một mặt phẳng. Tâm của trái đất là tâm của một đường tròn trên mặt phẳng đó và hai điểm nằm (gần như) trên chu vi của vòng tròn đó. Từ đó bạn có thể tính khoảng cách bằng cách tìm ra góc từ điểm này đến điểm kia là gì.
Nếu các điểm không có cùng độ cao hoặc nếu bạn cần tính đến việc trái đất không phải là một hình cầu hoàn hảo thì sẽ khó khăn hơn một chút.
bạn có thể tìm thấy cách thực hiện điều này (với một số giải thích tốt) trong F # trên fssnip
Đây là những phần quan trọng:
let GreatCircleDistance<[<Measure>] 'u> (R : float<'u>) (p1 : Location) (p2 : Location) =
let degToRad (x : float<deg>) = System.Math.PI * x / 180.0<deg/rad>
let sq x = x * x
// take the sin of the half and square the result
let sinSqHf (a : float<rad>) = (System.Math.Sin >> sq) (a / 2.0<rad>)
let cos (a : float<deg>) = System.Math.Cos (degToRad a / 1.0<rad>)
let dLat = (p2.Latitude - p1.Latitude) |> degToRad
let dLon = (p2.Longitude - p1.Longitude) |> degToRad
let a = sinSqHf dLat + cos p1.Latitude * cos p2.Latitude * sinSqHf dLon
let c = 2.0 * System.Math.Atan2(System.Math.Sqrt(a), System.Math.Sqrt(1.0-a))
R * c
Tôi cần thực hiện điều này trong PowerShell, hy vọng nó có thể giúp đỡ người khác. Một số lưu ý về phương pháp này
Tôi đang sử dụng Haversine, vì các bài đăng khác đã chỉ ra công thức của Vincenty chính xác hơn nhiều
Function MetresDistanceBetweenTwoGPSCoordinates($latitude1, $longitude1, $latitude2, $longitude2)
{
$Rad = ([math]::PI / 180);
$earthsRadius = 6378.1370 # Earth's Radius in KM
$dLat = ($latitude2 - $latitude1) * $Rad
$dLon = ($longitude2 - $longitude1) * $Rad
$latitude1 = $latitude1 * $Rad
$latitude2 = $latitude2 * $Rad
$a = [math]::Sin($dLat / 2) * [math]::Sin($dLat / 2) + [math]::Sin($dLon / 2) * [math]::Sin($dLon / 2) * [math]::Cos($latitude1) * [math]::Cos($latitude2)
$c = 2 * [math]::ATan2([math]::Sqrt($a), [math]::Sqrt(1-$a))
$distance = [math]::Round($earthsRadius * $c * 1000, 0) #Multiple by 1000 to get metres
Return $distance
}
Phiên bản Scala
def deg2rad(deg: Double) = deg * Math.PI / 180.0
def rad2deg(rad: Double) = rad / Math.PI * 180.0
def getDistanceMeters(lat1: Double, lon1: Double, lat2: Double, lon2: Double) = {
val theta = lon1 - lon2
val dist = Math.sin(deg2rad(lat1)) * Math.sin(deg2rad(lat2)) + Math.cos(deg2rad(lat1)) *
Math.cos(deg2rad(lat2)) * Math.cos(deg2rad(theta))
Math.abs(
Math.round(
rad2deg(Math.acos(dist)) * 60 * 1.1515 * 1.609344 * 1000)
)
}
// Có thể là một lỗi đánh máy?
Chúng tôi có một dlon biến không được sử dụng trong GetDirection,
tôi giả sử
double y = Math.Sin(dlon) * Math.Cos(lat2);
// cannot use degrees in Cos ?
nên là
double y = Math.Sin(dlon) * Math.Cos(dlat);
Đây là triển khai của tôi trong Elixir
defmodule Geo do
@earth_radius_km 6371
@earth_radius_sm 3958.748
@earth_radius_nm 3440.065
@feet_per_sm 5280
@d2r :math.pi / 180
def deg_to_rad(deg), do: deg * @d2r
def great_circle_distance(p1, p2, :km), do: haversine(p1, p2) * @earth_radius_km
def great_circle_distance(p1, p2, :sm), do: haversine(p1, p2) * @earth_radius_sm
def great_circle_distance(p1, p2, :nm), do: haversine(p1, p2) * @earth_radius_nm
def great_circle_distance(p1, p2, :m), do: great_circle_distance(p1, p2, :km) * 1000
def great_circle_distance(p1, p2, :ft), do: great_circle_distance(p1, p2, :sm) * @feet_per_sm
@doc """
Calculate the [Haversine](https://en.wikipedia.org/wiki/Haversine_formula)
distance between two coordinates. Result is in radians. This result can be
multiplied by the sphere's radius in any unit to get the distance in that unit.
For example, multiple the result of this function by the Earth's radius in
kilometres and you get the distance between the two given points in kilometres.
"""
def haversine({lat1, lon1}, {lat2, lon2}) do
dlat = deg_to_rad(lat2 - lat1)
dlon = deg_to_rad(lon2 - lon1)
radlat1 = deg_to_rad(lat1)
radlat2 = deg_to_rad(lat2)
a = :math.pow(:math.sin(dlat / 2), 2) +
:math.pow(:math.sin(dlon / 2), 2) *
:math.cos(radlat1) * :math.cos(radlat2)
2 * :math.atan2(:math.sqrt(a), :math.sqrt(1 - a))
end
end
Phiên bản phi tiêu
Thuật toán Haversine.
import 'dart:math';
class GeoUtils {
static double _degreesToRadians(degrees) {
return degrees * pi / 180;
}
static double distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
var earthRadiusKm = 6371;
var dLat = _degreesToRadians(lat2-lat1);
var dLon = _degreesToRadians(lon2-lon1);
lat1 = _degreesToRadians(lat1);
lat2 = _degreesToRadians(lat2);
var a = sin(dLat/2) * sin(dLat/2) +
sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2);
var c = 2 * atan2(sqrt(a), sqrt(1-a));
return earthRadiusKm * c;
}
}
Tôi nghĩ rằng một phiên bản của thuật toán trong R vẫn còn thiếu:
gpsdistance<-function(lat1,lon1,lat2,lon2){
# internal function to change deg to rad
degreesToRadians<- function (degrees) {
return (degrees * pi / 180)
}
R<-6371e3 #radius of Earth in meters
phi1<-degreesToRadians(lat1) # latitude 1
phi2<-degreesToRadians(lat2) # latitude 2
lambda1<-degreesToRadians(lon1) # longitude 1
lambda2<-degreesToRadians(lon2) # longitude 2
delta_phi<-phi1-phi2 # latitude-distance
delta_lambda<-lambda1-lambda2 # longitude-distance
a<-sin(delta_phi/2)*sin(delta_phi/2)+
cos(phi1)*cos(phi2)*sin(delta_lambda/2)*
sin(delta_lambda/2)
cc<-2*atan2(sqrt(a),sqrt(1-a))
distance<- R * cc
return(distance) # in meters
}
Đây là một biến thể của Kotlin:
import kotlin.math.*
class HaversineAlgorithm {
companion object {
private const val MEAN_EARTH_RADIUS = 6371.0
private const val D2R = Math.PI / 180.0
}
private fun haversineInKm(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double {
val lonDiff = (lon2 - lon1) * D2R
val latDiff = (lat2 - lat1) * D2R
val latSin = sin(latDiff / 2.0)
val lonSin = sin(lonDiff / 2.0)
val a = latSin * latSin + (cos(lat1 * D2R) * cos(lat2 * D2R) * lonSin * lonSin)
val c = 2.0 * atan2(sqrt(a), sqrt(1.0 - a))
return EQATORIAL_EARTH_RADIUS * c
}
}