Với dplyr
gói, bạn có thể sử dụng summarise_all
, summarise_at
hoặc summarise_if
chức năng để tổng hợp nhiều biến cùng một lúc. Đối với tập dữ liệu mẫu, bạn có thể làm điều này như sau:
library(dplyr)
# summarising all non-grouping variables
df2 <- df1 %>% group_by(year, month) %>% summarise_all(sum)
# summarising a specific set of non-grouping variables
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(x1, x2), sum)
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(-date), sum)
# summarising a specific set of non-grouping variables using select_helpers
# see ?select_helpers for more options
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(starts_with('x')), sum)
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(matches('.*[0-9]')), sum)
# summarising a specific set of non-grouping variables based on condition (class)
df2 <- df1 %>% group_by(year, month) %>% summarise_if(is.numeric, sum)
Kết quả của hai tùy chọn sau:
year month x1 x2
<dbl> <dbl> <dbl> <dbl>
1 2000 1 -73.58134 -92.78595
2 2000 2 -57.81334 -152.36983
3 2000 3 122.68758 153.55243
4 2000 4 450.24980 285.56374
5 2000 5 678.37867 384.42888
6 2000 6 792.68696 530.28694
7 2000 7 908.58795 452.31222
8 2000 8 710.69928 719.35225
9 2000 9 725.06079 914.93687
10 2000 10 770.60304 863.39337
# ... with 14 more rows
Lưu ý: summarise_each
là phản đối ủng hộ summarise_all
, summarise_at
và summarise_if
.
Như đã đề cập trong nhận xét của tôi ở trên , bạn cũng có thể sử dụng recast
chức năng từ reshape2
-package:
library(reshape2)
recast(df1, year + month ~ variable, sum, id.var = c("date", "year", "month"))
Điều này sẽ cho bạn kết quả tương tự.
recast
chức năng (cũng từreshape2
) tích hợpmelt
vàdcast
chức năng trong một đi cho các nhiệm vụ như thế này:recast(df1, year + month ~ variable, sum, id.var = c("date", "year", "month"))