Tôi nghĩ rằng nó đi xuống các giá trị ban đầu được sử dụng glm.fit
từ family$initialize
đó làm cho phương thức phân kỳ. Theo tôi biết, glm.fit
giải quyết vấn đề bằng cách hình thành phân tách QR của trong đó là ma trận thiết kế và là một đường chéo có căn bậc hai của các mục như được mô tả ở đây . Đó là, sử dụng phương pháp Newton-Raphson.W--√XXW--√
$intialize
Mã liên quan là:
if (NCOL(y) == 1) {
if (is.factor(y))
y <- y != levels(y)[1L]
n <- rep.int(1, nobs)
y[weights == 0] <- 0
if (any(y < 0 | y > 1))
stop("y values must be 0 <= y <= 1")
mustart <- (weights * y + 0.5)/(weights + 1)
m <- weights * y
if (any(abs(m - round(m)) > 0.001))
warning("non-integer #successes in a binomial glm!")
}
Đây là một phiên bản đơn giản hóa glm.fit
cho thấy quan điểm của tôi
> #####
> # setup
> y <- matrix(c(1,0,0,0), ncol = 1)
> weights <- 1:nrow(y) * 1000
> nobs <- length(y)
> family <- binomial()
> X <- matrix(rep(1, nobs), ncol = 1) # design matrix used later
>
> # set mu start as with family$initialize
> if (NCOL(y) == 1) {
+ n <- rep.int(1, nobs)
+ y[weights == 0] <- 0
+ mustart <- (weights * y + 0.5)/(weights + 1)
+ m <- weights * y
+ if (any(abs(m - round(m)) > 0.001))
+ warning("non-integer #successes in a binomial glm!")
+ }
>
> mustart # starting value
[,1]
[1,] 0.9995004995
[2,] 0.0002498751
[3,] 0.0001666111
[4,] 0.0001249688
> (eta <- family$linkfun(mustart))
[,1]
[1,] 7.601402
[2,] -8.294300
[3,] -8.699681
[4,] -8.987322
>
> #####
> # Start loop to fit
> mu <- family$linkinv(eta)
> mu_eta <- family$mu.eta(eta)
> z <- drop(eta + (y - mu) / mu_eta)
> w <- drop(sqrt(weights * mu_eta^2 / family$variance(mu = mu)))
>
> # code is simpler here as (X^T W X) is a scalar
> X_w <- X * w
> (.coef <- drop(crossprod(X_w)^-1 * ((w * z) %*% X_w)))
[1] -5.098297
> (eta <- .coef * X)
[,1]
[1,] -5.098297
[2,] -5.098297
[3,] -5.098297
[4,] -5.098297
>
> # repeat a few times from "start loop to fit"
Chúng ta có thể lặp lại phần cuối hai lần nữa để thấy rằng phương pháp Newton-Raphson phân kỳ:
> #####
> # Start loop to fit
> mu <- family$linkinv(eta)
> mu_eta <- family$mu.eta(eta)
> z <- drop(eta + (y - mu) / mu_eta)
> w <- drop(sqrt(weights * mu_eta^2 / family$variance(mu = mu)))
>
> # code is simpler here as (X^T W X) is a scalar
> X_w <- X * w
> (.coef <- drop(crossprod(X_w)^-1 * ((w * z) %*% X_w)))
[1] 10.47049
> (eta <- .coef * X)
[,1]
[1,] 10.47049
[2,] 10.47049
[3,] 10.47049
[4,] 10.47049
>
>
> #####
> # Start loop to fit
> mu <- family$linkinv(eta)
> mu_eta <- family$mu.eta(eta)
> z <- drop(eta + (y - mu) / mu_eta)
> w <- drop(sqrt(weights * mu_eta^2 / family$variance(mu = mu)))
>
> # code is simpler here as (X^T W X) is a scalar
> X_w <- X * w
> (.coef <- drop(crossprod(X_w)^-1 * ((w * z) %*% X_w)))
[1] -31723.76
> (eta <- .coef * X)
[,1]
[1,] -31723.76
[2,] -31723.76
[3,] -31723.76
[4,] -31723.76
Điều này không xảy ra nếu bạn bắt đầu với weights <- 1:nrow(y)
hoặc nói weights <- 1:nrow(y) * 100
.
Lưu ý rằng bạn có thể tránh phân kỳ bằng cách đặt mustart
đối số. Ví dụ làm
> glm(Y ~ 1,weights = w * 1000, family = binomial, mustart = rep(0.5, 4))
Call: glm(formula = Y ~ 1, family = binomial, weights = w * 1000, mustart = rep(0.5,
4))
Coefficients:
(Intercept)
-2.197
Degrees of Freedom: 3 Total (i.e. Null); 3 Residual
Null Deviance: 6502
Residual Deviance: 6502 AIC: 6504
weights
đối số kết thúc ở hai vị trí bên trongglm.fit
hàm (trong glm.R ), đó là những gì hoạt động trong R: 1) trong phần dư lệch, bằng hàm Cbinomial_dev_resids
(trong gia đình.c ) và 2) trong IWLS từng bướcCdqrls
(tính bằng lm.c ). Tôi không biết đủ C để giúp đỡ nhiều hơn trong việc truy tìm logic