Chúng ta có thể nói bất cứ điều gì về sự phụ thuộc của một biến ngẫu nhiên và chức năng của một biến ngẫu nhiên không? Ví dụ là X 2
Chúng ta có thể nói bất cứ điều gì về sự phụ thuộc của một biến ngẫu nhiên và chức năng của một biến ngẫu nhiên không? Ví dụ là X 2
Câu trả lời:
Here is a proof of @cardinal's comment with a small twist. If X
However, details at the measure theoretic level do not seem to be the main concern of the OP. If X
At the end of the day, the answer to the OPs question is that X
Lemma: Let X
The proof is below; but, first, some remarks. The Borel measurability is just a technical condition to ensure that we can assign probabilities in a reasonable and consistent way. The "almost surely" statement is also just a technicality.
The essence of the lemma is that if we want X
Contrast this with the case of functions f
Below, I give the simplest proof I could come up with for the lemma. I've made it exceedingly verbose so that all the details are as obvious as possible. If anyone sees ways to improve it or simplify it, I'd enjoy knowing.
Idea of proof: Intuitively, if we know X, then we know f(X). So, we need to find some event in σ(X), the sigma algebra generated by X, that relates our knowledge of X to that of f(X). Then, we use that information in conjunction with the assumed independence of X and f(X) to show that our available choices for f have been severely constrained.
Proof of lemma: Recall that X and Y are independent if and only if for all A∈σ(X) and B∈σ(Y), P(X∈A,Y∈B)=P(X∈A)P(Y∈B). Let Y=f(X) for some Borel measurable function f such that X and Y are independent. Define A(y)={ω:f(X(ω))≤y}. Then, A(y)={ω:X(ω)∈f−1((−∞,y])}
Since X and Y are assumed independent and A(y)∈σ(X), then P(X∈A(y),Y≤y)=P(X∈A(y))P(Y≤y)=P(f(X)≤y)P(f(X)≤y),
NB: Note that the converse is also true by an even simpler argument. That is, if f(X)=a almost surely, then X and f(X) are independent.