lme4 hoặc mã gói R nguồn mở khác tương đương với asreml-R


12

Tôi muốn phù hợp với mô hình hỗn hợp bằng cách sử dụng gói hồi quy lme4, nlme, baysian hoặc bất kỳ có sẵn.

Mô hình hỗn hợp trong các quy ước mã hóa Asreml- R

trước khi đi vào chi tiết cụ thể, chúng tôi có thể muốn có thông tin chi tiết về các quy ước asreml-R, cho những người không quen thuộc với mã ASREML.

y = Xτ + Zu + e ........................(1) ; 

mô hình hỗn hợp thông thường với, y biểu thị vectơ quan sát n × 1, trong đó τ là vectơ p × 1 của of xed e e ects, X là ma trận thiết kế n × p của xếp hạng cột đầy đủ kết hợp các quan sát với sự kết hợp thích hợp của các quan sát , u là vectơ q × 1 của các trường ngẫu nhiên, Z là ma trận thiết kế n × q kết hợp các quan sát với sự kết hợp thích hợp của các trường hợp ngẫu nhiên và e là vectơ n × 1 của các lỗi dư. Mô hình (1) được gọi là một mô hình hỗn hợp tuyến tính hoặc mô hình hỗn hợp tuyến tính. Nó được giả định

nhập mô tả hình ảnh ở đây

trong đó các ma trận G và R lần lượt là các hàm của tham số γ và.

Tham số là tham số phương sai mà chúng ta sẽ gọi là tham số tỷ lệ.

Trong các mô hình hỗn hợp có nhiều hơn một phương sai còn lại, ví dụ phát sinh trong phân tích dữ liệu có nhiều hơn một phần hoặc phương sai, tham số được chia thành một. Trong các mô hình điện tử hỗn hợp có một phương sai dư duy nhất thì bằng với phương sai dư (2). Trong trường hợp này R phải là ma trận tương quan. Thông tin chi tiết về các mô hình được cung cấp trong hướng dẫn sử dụng Asreml (liên kết) .

Cấu trúc phương sai cho các lỗi: Cấu trúc R và cấu trúc phương sai cho các trường hợp ngẫu nhiên: Cấu trúc G có thể được chỉ định.

nhập mô tả hình ảnh ở đâynhập mô tả hình ảnh ở đây

mô hình phương sai trong asreml () điều quan trọng là phải hiểu sự hình thành các cấu trúc phương sai thông qua các sản phẩm trực tiếp. Giả định bình phương tối thiểu thông thường (và mặc định trong asreml ()) là chúng được phân phối độc lập và giống hệt nhau (IID). Tuy nhiên, nếu dữ liệu từ một thí nghiệm hiện trường được đặt trong một mảng hình chữ nhật của các hàng r theo cột c, thì chúng ta có thể sắp xếp các phần dư e dưới dạng ma trận và có khả năng xem xét rằng chúng được tự động hóa trong các hàng và cột. một vectơ theo thứ tự trường, nghĩa là bằng cách sắp xếp các hàng dư trong các cột (các ô trong các khối), phương sai của các phần dư có thể là

nhập mô tả hình ảnh ở đây nhập mô tả hình ảnh ở đâylà các ma trận tương quan cho mô hình hàng (thứ tự r, tham số tự tương quan ½r) và mô hình cột (thứ tự c, tham số tự tương quan ½c) tương ứng. Cụ thể hơn, đôi khi một cấu trúc không gian tự động tách rời hai chiều (AR1 x AR1) đôi khi được giả định cho các lỗi phổ biến trong phân tích thử nghiệm hiện trường.

Dữ liệu ví dụ:

nin89 là từ thư viện asreml-R, nơi các biến thể khác nhau được phát triển trong các bản sao / khối trong trường hình chữ nhật. Để kiểm soát biến thiên bổ sung theo hướng hàng hoặc cột, mỗi ô được tham chiếu dưới dạng các biến Hàng và Cột (thiết kế cột hàng). Do đó, thiết kế cột hàng này với chặn. Năng suất được đo lường biến.

Mô hình ví dụ

Tôi cần một cái gì đó tương đương với mã asreml-R:

Cú pháp mô hình đơn giản sẽ trông như sau:

 rcb.asr <- asreml(yield  Variety, random =  Replicate, data = nin89)  
 .....model 0

Mô hình tuyến tính được chỉ định trong các đối số cố định (bắt buộc), ngẫu nhiên (tùy chọn) và RCov (thành phần lỗi) làm đối tượng công thức. Mặc định là một thuật ngữ lỗi đơn giản và không cần phải được chỉ định chính thức cho thuật ngữ lỗi như trong mô hình 0 .

ở đây sự đa dạng là hiệu ứng cố định và ngẫu nhiên là bản sao (khối). Bên cạnh các điều khoản ngẫu nhiên và cố định, chúng tôi có thể chỉ định thuật ngữ lỗi. Đó là mặc định trong mô hình này 0. Thành phần dư hoặc lỗi của mô hình được chỉ định trong một đối tượng công thức thông qua đối số RCov, xem các mô hình sau 1: 4.

Mô hình sau đây phức tạp hơn trong đó cả cấu trúc G (ngẫu nhiên) và R (lỗi) được chỉ định.

Mô hình 1:

data(nin89)


 # Model 1: RCB analysis with G and R structure
     rcb.asr <- asreml(yield ~ Variety, random = ~ idv(Replicate), 
      rcov = ~ idv(units), data = nin89)

Mô hình này tương đương với mô hình 0 ở trên và giới thiệu việc sử dụng mô hình phương sai G và R. Ở đây tùy chọn ngẫu nhiên và RCov chỉ định công thức ngẫu nhiên và RCov để chỉ định rõ ràng cấu trúc G và R. trong đó idv () là hàm mô hình đặc biệt trong asreml () xác định mô hình phương sai. Biểu thức idv (đơn vị) đặt rõ ràng ma trận phương sai cho e thành một danh tính tỷ lệ.

# Mô hình 2: mô hình không gian hai chiều với sự tương quan theo một hướng

  sp.asr <- asreml(yield ~ Variety, rcov = ~ Column:ar1(Row), data = nin89)

các đơn vị thử nghiệm của nin89 được lập chỉ mục bởi Cột và Hàng. Vì vậy, chúng tôi mong đợi sự thay đổi ngẫu nhiên theo hai hướng - hướng hàng và cột trong trường hợp này. trong đó ar1 () là một hàm đặc biệt chỉ định mô hình phương sai tự động theo thứ tự đầu tiên cho Row. Cuộc gọi này chỉ định cấu trúc không gian hai chiều có lỗi nhưng chỉ có tương quan không gian theo hướng hàng. Mô hình phương sai cho Cột là danh tính (id ()) nhưng không cần phải được chỉ định chính thức vì đây là mặc định.

# mô hình 3: mô hình không gian hai chiều, cấu trúc lỗi theo cả hai hướng

 sp.asr <- asreml(yield ~ Variety, rcov = ~ ar1(Column):ar1(Row),  
 data = nin89)
sp.asr <- asreml(yield ~ Variety, random = ~ units, 
 rcov = ~ ar1(Column):ar1(Row), data = nin89)

tương tự như mô hình 2 ở trên, tuy nhiên mối tương quan là hai hướng - một hướng tự động.

Tôi không chắc có bao nhiêu mô hình này có thể với các gói R nguồn mở. Ngay cả khi giải pháp của bất kỳ một trong những mô hình này sẽ giúp ích rất nhiều. Ngay cả khi cơn sốt +50 có thể kích thích để phát triển gói như vậy sẽ giúp ích rất nhiều!

Xem MAYSaseen đã cung cấp đầu ra từ mỗi mô hình và dữ liệu (dưới dạng câu trả lời) để so sánh.

Chỉnh sửa: Sau đây là gợi ý tôi nhận được trong diễn đàn thảo luận mô hình hỗn hợp: "Bạn có thể xem các gói hồi quy và không gian của David Clifford. Trước đây cho phép khớp các mô hình hỗn hợp (Gaussian) trong đó bạn có thể chỉ định cấu trúc của ma trận hiệp phương sai rất linh hoạt (ví dụ, tôi đã sử dụng nó cho dữ liệu phả hệ). Gói spatialCovariance sử dụng hồi quy để cung cấp các mô hình phức tạp hơn AR1xAR1, nhưng có thể phải áp dụng với tác giả về việc áp dụng nó cho vấn đề chính xác của bạn. "


Tôi khá chắc chắn rằng các mô hình 2-4 là không thể lme4. Bạn có thể (a) cho chúng tôi biết lý do tại sao bạn cần phải làm điều này lme4thay vì asreml-R(b) xem xét việc đăng bài ở r-sig-mixed-modelsnơi có chuyên môn phù hợp hơn không?
Ben Bolker

ý tưởng cơ bản là asreml-R yêu cầu phải có giấy phép (ít nhất là đối với người dùng ở các nước phát triển), nếu có thể trong lme4 hoặc các gói mô hình hỗn hợp khác sẽ rất tuyệt ...
John

Tôi nghĩ rằng điều này sẽ không dễ dàng. Tôi nghĩ rằng cách tốt nhất của bạn có thể là xác định một điểm mới corStructtrong nlme(đối với các tương quan bất đẳng hướng) ... Sẽ hữu ích nếu bạn có thể nêu ngắn gọn (bằng từ hoặc phương trình) các mô hình thống kê tương ứng với các câu lệnh ASREML này, vì chúng ta không quen thuộc lắm Cú pháp ASREML ...
Ben Bolker

1
Sau đây là các nhận xét trong nhóm mô hình hỗn hợp: Bạn có thể xem xét các gói hồi quy và không gian của David Clifford. Cái trước cho phép khớp các mô hình hỗn hợp (Gaussian) trong đó bạn có thể chỉ định cấu trúc của ma trận hiệp phương sai rất linh hoạt (ví dụ: tôi đã sử dụng nó cho dữ liệu phả hệ). Gói spatialCovariance sử dụng hồi quy để cung cấp các mô hình phức tạp hơn AR1xAR1, nhưng có thể được áp dụng. Bạn có thể phải tương ứng với tác giả về việc áp dụng nó cho vấn đề chính xác của bạn.
Giăng

1
Nếu tôi có cơ hội tôi sẽ cố gắng giải quyết càng nhiều càng tốt, nhưng thật lòng mà nói tôi có thể không làm được, tôi đã có rất nhiều trên đĩa của mình. Nhìn vào các gói mà David Clifford gợi ý nghe có vẻ là một ý tưởng tuyệt vời - có lẽ bạn có thể giải quyết vấn đề của riêng mình theo cách đó ... Tôi khá chắc chắn rằng mô hình 1 có thể được thực hiện MCMCglmmvà tôi khá chắc chắn rằng (ngoài cách spatialCovarianceđược đề cập, mà tôi không quen thuộc) cách duy nhất để thực hiện nó trong R là bằng cách xác định corStructs mới - có thể, nhưng không tầm thường.
Ben Bolker

Câu trả lời:


4

Bạn có thể phù hợp với mô hình này với AD Model Builder. AD Model Builder là phần mềm miễn phí để xây dựng các mô hình phi tuyến tổng quát bao gồm các mô hình hiệu ứng ngẫu nhiên phi tuyến chung. Vì vậy, ví dụ, bạn có thể phù hợp với mô hình không gian nhị thức âm trong đó cả phân tán trung bình và phân tán đều có cấu trúc ar (1) x ar (1). Tôi đã xây dựng mã cho ví dụ này và phù hợp với dữ liệu. Nếu bất cứ ai quan tâm, có lẽ tốt hơn để thảo luận về điều này trong danh sách tại http://admb-project.org

Lưu ý: Có phiên bản R của ADMB, nhưng các tính năng có sẵn trong gói R là một tập hợp con của phần mềm ADMB độc lập.

Trong ví dụ này, việc tạo tệp ASCII với dữ liệu sẽ dễ dàng hơn, đọc nó vào chương trình ADMB, chạy chương trình và sau đó đọc các ước tính tham số, v.v. trở lại R cho bất cứ điều gì bạn muốn làm.

Bạn nên hiểu rằng ADMB không phải là một tập hợp các gói, mà là một ngôn ngữ để viết phần mềm ước tính tham số phi tuyến. Như tôi đã nói trước đây, tốt hơn là thảo luận về điều này trong danh sách ADMB nơi mọi người đều biết về phần mềm. Sau khi hoàn thành và bạn hiểu mô hình bạn có thể đăng kết quả tại đây. Tuy nhiên, đây là một liên kết đến mã ML và REML tôi đặt cùng với dữ liệu lúa mì.

http://lists.admb-project.org/pipermail/users/attachments/20111124/436123c8/attachment.zip


Có R interphase để kết nối với AD Model Builder không?
Giăng

1

Mô hình 0

ASReml-R

rcb0.asr <- asreml(yield~Variety, random=~Rep, data=nin89, na.method.X="include")
summary(rcb0.asr)
$call
asreml(fixed = yield ~ Variety, random = ~Rep, data = nin89, 
    na.method.X = "include")

$loglik
[1] -454.4691

$nedf
[1] 168

$sigma
[1] 7.041475

$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive

attr(,"class")
[1] "summary.asreml"

summary(rcb0.asr)$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive

> anova(rcb0.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   12001.6        242.054    <2e-16 ***
Variety       55    2387.5         48.152    0.7317    
residual (MS)         49.6                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(rcb0.asr)$fixed
                    effect
Variety_ARAPAHOE    0.0000
Variety_BRULE      -3.3625
Variety_BUCKSKIN   -3.8750
Variety_CENTURA    -7.7875
Variety_CENTURK78   0.8625
Variety_CHEYENNE   -1.3750
Variety_CODY       -8.2250
Variety_COLT       -2.4375
Variety_GAGE       -4.9250
Variety_HOMESTEAD  -1.8000
Variety_KS831374   -5.3125
Variety_LANCER     -0.8750
Variety_LANCOTA    -2.8875
Variety_NE83404    -2.0500
Variety_NE83406    -5.1625
Variety_NE83407    -6.7500
Variety_NE83432    -9.7125
Variety_NE83498     0.6875
Variety_NE83T12    -7.8750
Variety_NE84557    -8.9125
Variety_NE85556    -3.0500
Variety_NE85623    -7.7125
Variety_NE86482    -5.1500
Variety_NE86501     1.5000
Variety_NE86503     3.2125
Variety_NE86507    -5.6500
Variety_NE86509    -2.5875
Variety_NE86527    -7.4250
Variety_NE86582    -4.9000
Variety_NE86606     0.3250
Variety_NE86607    -0.1125
Variety_NE86T666   -7.9000
Variety_NE87403    -4.3125
Variety_NE87408    -3.1375
Variety_NE87409    -8.0625
Variety_NE87446    -1.7625
Variety_NE87451    -4.8250
Variety_NE87457    -5.5250
Variety_NE87463    -3.5250
Variety_NE87499    -9.0250
Variety_NE87512    -6.1875
Variety_NE87513    -2.6250
Variety_NE87522    -4.4375
Variety_NE87612    -7.6375
Variety_NE87613    -0.0375
Variety_NE87615    -3.7500
Variety_NE87619     1.8250
Variety_NE87627    -6.2125
Variety_NORKAN     -5.0250
Variety_REDLAND     1.0625
Variety_ROUGHRIDER -8.2500
Variety_SCOUT66    -1.9125
Variety_SIOUXLAND   0.6750
Variety_TAM107     -1.0375
Variety_TAM200     -8.2000
Variety_VONA       -5.8375
(Intercept)        29.4375
> coef(rcb0.asr)$random
          effect
Rep_1  1.8795997
Rep_2  2.8432659
Rep_3 -0.8712739
Rep_4 -3.8515918

l4

> rcb0.lmer <- lmer(yield~Variety+(1|Rep), data=nin89)
> print(rcb0.lmer, corr=FALSE)
Linear mixed model fit by REML 
Formula: yield ~ Variety + (1 | Rep) 
   Data: nin89 
  AIC  BIC logLik deviance REMLdev
 1334 1532 -608.9     1456    1218
Random effects:
 Groups   Name        Variance Std.Dev.
 Rep      (Intercept)  9.8829  3.1437  
 Residual             49.5824  7.0415  
Number of obs: 224, groups: Rep, 4

Fixed effects:
                  Estimate Std. Error t value
(Intercept)        29.4375     3.8556   7.635
VarietyBRULE       -3.3625     4.9791  -0.675
VarietyBUCKSKIN    -3.8750     4.9791  -0.778
VarietyCENTURA     -7.7875     4.9791  -1.564
VarietyCENTURK78    0.8625     4.9791   0.173
VarietyCHEYENNE    -1.3750     4.9791  -0.276
VarietyCODY        -8.2250     4.9791  -1.652
VarietyCOLT        -2.4375     4.9791  -0.490
VarietyGAGE        -4.9250     4.9791  -0.989
VarietyHOMESTEAD   -1.8000     4.9791  -0.362
VarietyKS831374    -5.3125     4.9791  -1.067
VarietyLANCER      -0.8750     4.9791  -0.176
VarietyLANCOTA     -2.8875     4.9791  -0.580
VarietyNE83404     -2.0500     4.9791  -0.412
VarietyNE83406     -5.1625     4.9791  -1.037
VarietyNE83407     -6.7500     4.9791  -1.356
VarietyNE83432     -9.7125     4.9791  -1.951
VarietyNE83498      0.6875     4.9791   0.138
VarietyNE83T12     -7.8750     4.9791  -1.582
VarietyNE84557     -8.9125     4.9791  -1.790
VarietyNE85556     -3.0500     4.9791  -0.613
VarietyNE85623     -7.7125     4.9791  -1.549
VarietyNE86482     -5.1500     4.9791  -1.034
VarietyNE86501      1.5000     4.9791   0.301
VarietyNE86503      3.2125     4.9791   0.645
VarietyNE86507     -5.6500     4.9791  -1.135
VarietyNE86509     -2.5875     4.9791  -0.520
VarietyNE86527     -7.4250     4.9791  -1.491
VarietyNE86582     -4.9000     4.9791  -0.984
VarietyNE86606      0.3250     4.9791   0.065
VarietyNE86607     -0.1125     4.9791  -0.023
VarietyNE86T666    -7.9000     4.9791  -1.587
VarietyNE87403     -4.3125     4.9791  -0.866
VarietyNE87408     -3.1375     4.9791  -0.630
VarietyNE87409     -8.0625     4.9791  -1.619
VarietyNE87446     -1.7625     4.9791  -0.354
VarietyNE87451     -4.8250     4.9791  -0.969
VarietyNE87457     -5.5250     4.9791  -1.110
VarietyNE87463     -3.5250     4.9791  -0.708
VarietyNE87499     -9.0250     4.9791  -1.813
VarietyNE87512     -6.1875     4.9791  -1.243
VarietyNE87513     -2.6250     4.9791  -0.527
VarietyNE87522     -4.4375     4.9791  -0.891
VarietyNE87612     -7.6375     4.9791  -1.534
VarietyNE87613     -0.0375     4.9791  -0.008
VarietyNE87615     -3.7500     4.9791  -0.753
VarietyNE87619      1.8250     4.9791   0.367
VarietyNE87627     -6.2125     4.9791  -1.248
VarietyNORKAN      -5.0250     4.9791  -1.009
VarietyREDLAND      1.0625     4.9791   0.213
VarietyROUGHRIDER  -8.2500     4.9791  -1.657
VarietySCOUT66     -1.9125     4.9791  -0.384
VarietySIOUXLAND    0.6750     4.9791   0.136
VarietyTAM107      -1.0375     4.9791  -0.208
VarietyTAM200      -8.2000     4.9791  -1.647
VarietyVONA        -5.8375     4.9791  -1.172
> anova(rcb0.lmer)
Analysis of Variance Table
        Df Sum Sq Mean Sq F value
Variety 55 2387.5  43.409  0.8755
> fixef(rcb0.lmer)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb0.lmer)
$Rep
  (Intercept)
1   1.8798700
2   2.8436747
3  -0.8713991
4  -3.8521455

nlme

> rcb0.lme <- lme(yield~Variety, random=~1|Rep, data=na.omit(nin89))
> print(rcb0.lme, corr=FALSE)
Linear mixed-effects model fit by REML
  Data: na.omit(nin89) 
  Log-restricted-likelihood: -608.8508
  Fixed: yield ~ Variety 
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 

Random effects:
 Formula: ~1 | Rep
        (Intercept) Residual
StdDev:     3.14371 7.041475

Number of Observations: 224
Number of Groups: 4 
> anova(rcb0.lme)
            numDF denDF   F-value p-value
(Intercept)     1   165 242.05402  <.0001
Variety        55   165   0.87549  0.7119
> fixef(rcb0.lme)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb0.lme)
  (Intercept)
1   1.8795997
2   2.8432659
3  -0.8712739
4  -3.8515918

1

Mô hình 1

ASReml-R

> rcb.asr <- asreml(yield~Variety, random=~idv(Rep), rcov=~idv(units), data=nin89, na.method.X="include")
> summary(rcb.asr)
$call
asreml(fixed = yield ~ Variety, random = ~idv(Rep), rcov = ~idv(units), 
    data = nin89, na.method.X = "include")

$loglik
[1] -454.4691

$nedf
[1] 168

$sigma
[1] 1

$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var  9.882911  9.882911  8.792823 1.123975   Positive
R!variance   1.000000  1.000000        NA       NA      Fixed
R!units.var 49.582368 49.582368  5.458839 9.082951   Positive

attr(,"class")
[1] "summary.asreml"
> summary(rcb0.asr)$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive
> anova(rcb.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   242.054        242.054    <2e-16 ***
Variety       55    48.152         48.152    0.7317    
residual (MS)        1.000                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(rcb.asr)$fixed
                    effect
Variety_ARAPAHOE    0.0000
Variety_BRULE      -3.3625
Variety_BUCKSKIN   -3.8750
Variety_CENTURA    -7.7875
Variety_CENTURK78   0.8625
Variety_CHEYENNE   -1.3750
Variety_CODY       -8.2250
Variety_COLT       -2.4375
Variety_GAGE       -4.9250
Variety_HOMESTEAD  -1.8000
Variety_KS831374   -5.3125
Variety_LANCER     -0.8750
Variety_LANCOTA    -2.8875
Variety_NE83404    -2.0500
Variety_NE83406    -5.1625
Variety_NE83407    -6.7500
Variety_NE83432    -9.7125
Variety_NE83498     0.6875
Variety_NE83T12    -7.8750
Variety_NE84557    -8.9125
Variety_NE85556    -3.0500
Variety_NE85623    -7.7125
Variety_NE86482    -5.1500
Variety_NE86501     1.5000
Variety_NE86503     3.2125
Variety_NE86507    -5.6500
Variety_NE86509    -2.5875
Variety_NE86527    -7.4250
Variety_NE86582    -4.9000
Variety_NE86606     0.3250
Variety_NE86607    -0.1125
Variety_NE86T666   -7.9000
Variety_NE87403    -4.3125
Variety_NE87408    -3.1375
Variety_NE87409    -8.0625
Variety_NE87446    -1.7625
Variety_NE87451    -4.8250
Variety_NE87457    -5.5250
Variety_NE87463    -3.5250
Variety_NE87499    -9.0250
Variety_NE87512    -6.1875
Variety_NE87513    -2.6250
Variety_NE87522    -4.4375
Variety_NE87612    -7.6375
Variety_NE87613    -0.0375
Variety_NE87615    -3.7500
Variety_NE87619     1.8250
Variety_NE87627    -6.2125
Variety_NORKAN     -5.0250
Variety_REDLAND     1.0625
Variety_ROUGHRIDER -8.2500
Variety_SCOUT66    -1.9125
Variety_SIOUXLAND   0.6750
Variety_TAM107     -1.0375
Variety_TAM200     -8.2000
Variety_VONA       -5.8375
(Intercept)        29.4375
> coef(rcb.asr)$random
          effect
Rep_1  1.8795997
Rep_2  2.8432658
Rep_3 -0.8712738
Rep_4 -3.8515916

nlme

Xem mánh khóe

> nin89$Int <- 1
> rcb.lme <- lme(yield~Variety, random=list(Int=pdIdent(~Rep-1)), data=na.omit(nin89))
> print(rcb.lme, corr=FALSE)
Linear mixed-effects model fit by REML
  Data: na.omit(nin89) 
  Log-restricted-likelihood: -608.8508
  Fixed: yield ~ Variety 
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 

Random effects:
 Formula: ~Rep - 1 | Int
 Structure: Multiple of an Identity
           Rep1    Rep2    Rep3    Rep4 Residual
StdDev: 3.14371 3.14371 3.14371 3.14371 7.041475

Number of Observations: 224
Number of Groups: 1 
> anova(rcb.lme)
            numDF denDF   F-value p-value
(Intercept)     1   168 242.05402  <.0001
Variety        55   168   0.87549  0.7121
> fixef(rcb.lme)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb.lme)
    Rep1     Rep2       Rep3      Rep4
1 1.8796 2.843266 -0.8712739 -3.851592

1

Mô hình 2

ASReml-R

sp1.asr <- asreml(yield~Variety, rcov=~Column:ar1(Row), data=nin89, na.method.X="include")

> summary(sp1.asr)
$call
asreml(fixed = yield ~ Variety, rcov = ~Column:ar1(Row), data = nin89, 
    na.method.X = "include")

$loglik
[1] -408.1412

$nedf
[1] 168

$sigma
[1] 7.975127

$varcomp
               gamma  component  std.error   z.ratio    constraint
R!variance 1.0000000 63.6026561 11.3182328  5.619486      Positive
R!Row.cor  0.7795799  0.7795799  0.0406026 19.200245 Unconstrained

attr(,"class")
[1] "summary.asreml"
> summary(sp1.asr)$varcomp
               gamma  component  std.error   z.ratio    constraint
R!variance 1.0000000 63.6026561 11.3182328  5.619486      Positive
R!Row.cor  0.7795799  0.7795799  0.0406026 19.200245 Unconstrained
> anova(sp1.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   24604.3         386.84 < 2.2e-16 ***
Variety       55    7974.4         125.38 2.048e-07 ***
residual (MS)         63.6                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(sp1.asr)$fixed
                        effect
Variety_ARAPAHOE     0.0000000
Variety_BRULE       -2.4048816
Variety_BUCKSKIN     7.8064972
Variety_CENTURA     -1.6997427
Variety_CENTURK78   -1.3829446
Variety_CHEYENNE    -1.1113084
Variety_CODY        -6.7461911
Variety_COLT        -1.7963394
Variety_GAGE        -3.4539524
Variety_HOMESTEAD   -5.5877510
Variety_KS831374    -0.8589476
Variety_LANCER      -2.8418476
Variety_LANCOTA     -5.9394801
Variety_NE83404     -3.4112613
Variety_NE83406     -1.9057358
Variety_NE83407     -3.2563922
Variety_NE83432     -5.4594311
Variety_NE83498      0.6446010
Variety_NE83T12     -4.0071361
Variety_NE84557     -4.2005181
Variety_NE85556      1.4836395
Variety_NE85623     -2.7617129
Variety_NE86482     -1.4309381
Variety_NE86501     -2.2287462
Variety_NE86503     -0.4557866
Variety_NE86507     -0.6983418
Variety_NE86509     -3.9215624
Variety_NE86527      0.5294386
Variety_NE86582     -5.4653632
Variety_NE86606     -0.7291575
Variety_NE86607     -0.1265536
Variety_NE86T666   -12.1437291
Variety_NE87403     -7.4623631
Variety_NE87408     -3.3586380
Variety_NE87409     -1.0360336
Variety_NE87446     -4.9030958
Variety_NE87451     -3.2836149
Variety_NE87457     -3.5244583
Variety_NE87463     -3.8427658
Variety_NE87499     -4.6298393
Variety_NE87512     -5.3760809
Variety_NE87513     -5.5656241
Variety_NE87522     -7.6500899
Variety_NE87612     -2.7225851
Variety_NE87613     -0.8793319
Variety_NE87615     -4.0089291
Variety_NE87619      0.7975626
Variety_NE87627    -10.1315147
Variety_NORKAN      -7.1804945
Variety_REDLAND      0.6753066
Variety_ROUGHRIDER  -0.9637487
Variety_SCOUT66      0.7088916
Variety_SIOUXLAND   -1.1998807
Variety_TAM107      -3.7160351
Variety_TAM200      -9.0340942
Variety_VONA        -2.7970689
(Intercept)         28.3487457

nlme

Làm việc trên, nhưng không tìm ra. Có thể là một cái gì đó như thế này. Vẫn không thể tìm ra cách để làm rcov=~Column:ar1(Row)vớinlme

nin89$Int <- 1
sp1.lme <- lme(yield~Variety, random=~1|Int, data=na.omit(nin89))

1

Mô hình 3

ASReml-R

sp2.asr <- asreml(yield~Variety, rcov=~ar1(Column):ar1(Row), data=nin89, na.method.X="include")

> summary(sp2.asr)
$call
asreml(fixed = yield ~ Variety, rcov = ~ar1(Column):ar1(Row), 
    data = nin89, na.method.X = "include")

$loglik
[1] -399.3238

$nedf
[1] 168

$sigma
[1] 6.978728

$varcomp
                 gamma  component  std.error   z.ratio    constraint
R!variance   1.0000000 48.7026395 7.15527571  6.806536      Positive
R!Column.cor 0.4375045  0.4375045 0.08060227  5.427943 Unconstrained
R!Row.cor    0.6554798  0.6554798 0.05637709 11.626704 Unconstrained

attr(,"class")
[1] "summary.asreml"
> summary(sp2.asr)$varcomp
                 gamma  component  std.error   z.ratio    constraint
R!variance   1.0000000 48.7026395 7.15527571  6.806536      Positive
R!Column.cor 0.4375045  0.4375045 0.08060227  5.427943 Unconstrained
R!Row.cor    0.6554798  0.6554798 0.05637709 11.626704 Unconstrained
> anova(sp2.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   16165.6         331.93 < 2.2e-16 ***
Variety       55    5961.7         122.41 4.866e-07 ***
residual (MS)         48.7                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(sp2.asr)$fixed
                         effect
Variety_ARAPAHOE     0.00000000
Variety_BRULE        0.03029321
Variety_BUCKSKIN     8.89207227
Variety_CENTURA     -0.68979639
Variety_CENTURK78    0.16461970
Variety_CHEYENNE     0.50267820
Variety_CODY        -3.26960093
Variety_COLT        -0.51826695
Variety_GAGE        -0.95824999
Variety_HOMESTEAD   -4.57873078
Variety_KS831374     0.27843476
Variety_LANCER      -2.95379384
Variety_LANCOTA     -4.67006598
Variety_NE83404     -1.32290865
Variety_NE83406     -1.66351994
Variety_NE83407     -2.64471830
Variety_NE83432     -4.42828427
Variety_NE83498      1.80418738
Variety_NE83T12     -2.11789109
Variety_NE84557     -2.34685080
Variety_NE85556      2.78001120
Variety_NE85623     -1.42164134
Variety_NE86482     -1.63334029
Variety_NE86501     -2.94339063
Variety_NE86503     -0.95747374
Variety_NE86507      0.46223383
Variety_NE86509     -3.27166458
Variety_NE86527      1.86588098
Variety_NE86582     -3.87940069
Variety_NE86606      0.22753741
Variety_NE86607      0.60702026
Variety_NE86T666   -10.27005825
Variety_NE87403     -7.43945904
Variety_NE87408     -3.10433009
Variety_NE87409      1.29746980
Variety_NE87446     -4.15943316
Variety_NE87451     -1.85324718
Variety_NE87457     -2.31156727
Variety_NE87463     -4.47086114
Variety_NE87499     -1.85909637
Variety_NE87512     -4.06473578
Variety_NE87513     -3.99604937
Variety_NE87522     -5.52109215
Variety_NE87612     -1.95543098
Variety_NE87613     -0.83160454
Variety_NE87615     -1.92104271
Variety_NE87619      2.98322047
Variety_NE87627     -7.33205188
Variety_NORKAN      -5.78418023
Variety_REDLAND      1.75249392
Variety_ROUGHRIDER  -0.97736288
Variety_SCOUT66      2.13126094
Variety_SIOUXLAND   -2.54195346
Variety_TAM107      -1.59083563
Variety_TAM200      -6.54229161
Variety_VONA        -1.52728371
(Intercept)         27.04285175

nlme

Làm việc trên, nhưng không tìm ra. Có thể là một cái gì đó như thế này. Vẫn không thể tìm ra cách để làm rcov=~ar1(Column):ar1(Row)vớinlme

nin89$Int <- 1
sp1.lme <- lme(yield~Variety, random=~1|Int, data=na.omit(nin89))

Tôi không thể tìm ra làm thế nào để phù hợp với Mô hình 2 và 3 với nlme. Tôi đang làm việc với nó và sẽ cập nhật câu trả lời khi hoàn thành nó. Nhưng tôi đã bao gồm đầu ra từ ASReml-RMô hình 2 và 3 cho mục đích so sánh. Kevin có kinh nghiệm tốt trong việc phân tích các mô hình như vậy và Ben Bolker có thẩm quyền tuyệt vời về Mô hình hỗn hợp. Tôi hy vọng họ có thể giúp chúng tôi trên Mô hình 2 và 3.

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.