Làm thế nào để tính khoảng tin cậy cho tương quan xếp hạng của Spearman?


13

Wikipedia có một biến đổi Fisher của tương quan xếp hạng Spearman với điểm z gần đúng. Có lẽ điểm z là sự khác biệt so với giả thuyết null (tương quan xếp hạng 0)?

Trang này có ví dụ sau:

4, 10, 3, 1, 9, 2, 6, 7, 8, 5
5, 8, 6, 2, 10, 3, 9, 4, 7, 1
rank correlation 0.684848
"95% CI for rho (Fisher's z transformed)= 0.097085 to 0.918443"

Làm thế nào để họ sử dụng biến đổi Fisher để có được khoảng tin cậy 95%?

Câu trả lời:


20


tanh(arctanhr±1.96/n3),
rn

1/n3

EDIT : Ví dụ trên trong Python:

import math
r = 0.684848
num = 10
stderr = 1.0 / math.sqrt(num - 3)
delta = 1.96 * stderr
lower = math.tanh(math.atanh(r) - delta)
upper = math.tanh(math.atanh(r) + delta)
print "lower %.6f upper %.6f" % (lower, upper)

cho

lower 0.097071 upper 0.918445

đồng ý với ví dụ của bạn đến 4 chữ số thập phân.


Một câu hỏi: 1.06 trong en.wikipedia.org/wiki/ Nhật liên quan đến câu trả lời của bạn như thế nào?
dfrankow

Bạn đã đưa tôi đến đó! Tôi không biết thành thật; tôi chỉ thử nó có và không có và nó phù hợp với kết quả ví dụ mà bạn đã cho tốt hơn nhiều mà không có.
onestop

1
@dfrankow Tôi đã chấp nhận chỉnh sửa đó, nhưng đây không phải là cách sử dụng hoàn hảo tính năng này - ý tưởng tốt hơn là thêm văn bản đó vào câu hỏi.

6
ζ^= =tanh-1θ^θ^σζ^21,06/(n-3), nhưng xem Bonett và Wright, Yêu cầu kích thước mẫu để ước tính mối tương quan giữa pearson, kendall và spearman , Psychometrika 65 (1): 23, 2000.
chl
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.