Ai đó có thể vui lòng giải thích cong vênh thời gian động để xác định độ tương tự chuỗi thời gian không?


14

Tôi đang cố gắng nắm bắt các biện pháp cong vênh thời gian động để so sánh chuỗi thời gian với nhau. Tôi có ba bộ dữ liệu chuỗi thời gian như thế này:

T1 <- structure(c(0.000213652387565, 0.000535045478866, 0, 0, 0.000219346347883, 
0.000359669104424, 0.000269469145783, 0.00016051364366, 0.000181950509461, 
0.000385579332948, 0.00078170803205, 0.000747244535774, 0, 0.000622858922454, 
0.000689084895259, 0.000487983408564, 0.000224744353298, 0.000416449765747, 
0.000308388157895, 0.000198906016907, 0.000179549331179, 9.06289650172e-05, 
0.000253506844685, 0.000582896161212, 0.000386473429952, 0.000179839942451, 
0, 0.000275608635737, 0.000622665006227, 0.00036075036075, 0.00029057097196, 
0.000353232073472, 0.000394710874285, 0.000207555002076, 0.000402738622634, 
0, 0.000309693403531, 0.000506521463847, 0.000226988991034, 0.000414164423276, 
9.6590360282e-05, 0.000476689865573, 0.000377572210685, 0.000378967314069, 
9.25240562546e-05, 0.000172309813044, 0.000447627573859, 0, 0.000589333071408, 
0.000191699415317, 0.000362943471554, 0.000287549122975, 0.000311688311688, 
0.000724112961622, 0.000434656621269, 0.00122292103424, 0.00177549812586, 
0.00308008213552, 0.00164338537387, 0.00176056338028, 0.00180072028812, 
0.00258939580764, 0.00217548948513, 0.00493015612161, 0.00336344416683, 
0.00422716412424, 0.00313360554553, 0.00540144648906, 0.00425728829246, 
0.0046828437633, 0.00397219463754, 0.00501656412683, 0.00492700729927, 
0.00224424911165, 0.000634696755994, 0.00120550276557, 0.00125313283208, 
0.00164551010813, 0.00143575017947, 0.00237006940918, 0.00236686390533, 
0.00420336269015, 0.00329840900272, 0.00242005185825, 0.00326554846371, 
0.006217237596, 0.0037103784586, 0.0038714672861, 0.00455830066551, 
0.00361747518783, 0.00304147465438, 0.00476801760499, 0.00569875504121, 
0.00583855136233, 0.0050566695728, 0.0042220072126, 0.00408237321963, 
0.00255222610833, 0.00123507616303, 0.00178136133508, 0.00147434637311, 
0.00126742712294, 0.00186590371937, 0.00177226406735, 0.00249154653853, 
0.00549127279859, 0.00349072202829, 0.00348027842227, 0.00229555236729, 
0.00336862367661, 0.00383477593952, 0.00273999412858, 0.00349618180145, 
0.00376108175875, 0.00383351588171, 0.00368928059028, 0.00480028982882, 
0.00388823582602, 0.00745054380406, 0.0103754506287, 0.00822677278011, 
0.00778350981989, 0.0041831792162, 0.00537228238059, 0.00723645609231, 
0.0144428396845, 0.00893333333333, 0.0106231171714, 0.0158367059652, 
0.01811729548, 0.0207095263821, 0.0211700064641, 0.017604180993, 
0.0165804327375, 0.0188679245283, 0.0191859923629, 0.0269251008595, 
0.0351239669421, 0.0283510318573, 0.0346557651212, 0.0270022042616, 
0.0260845175767, 0.0349758630112, 0.0207069247809, 0.0106362024818, 
0.00981093510475, 0.00916507201128, 0.00887198986058, 0.0073929115025, 
0.00659077291791, 0.00716191546131, 0.00942304513143, 0.0106886280007, 
0.0123527175979, 0.0171022290546, 0.0142909490656, 0.0157642220699, 
0.0265140538974, 0.0194395354708, 0.0241685144124, 0.0229897123662, 
0.017921889568, 0.0155115839714, 0.0145263157895, 0.017609281127, 
0.0157671315949, 0.0190258751903, 0.0138453217956, 0.00958058335108, 
0.0122924304507, 0.00929741151611, 0.00885235535884, 0.00509319462505, 
0.0061314863177, 0.0063104189044, 0.00729117134253, 0.010843373494, 
0.0217755443886, 0.0181687353841, 0.0155402963498, 0.017310022503, 
0.0214746959003, 0.026357827476, 0.0194751217195, 0.0196820590462, 
0.0184317400812, 0.0130208333333, 0.0128666035951, 0.0120045731707, 
0.0122374253228, 0.00874940561103, 0.0114368092263, 0.00922893718369, 
0.00479041916168, 0.00644107774653, 0.00775830595108, 0.00829578041786, 
0.00681348095875, 0.00573782551125, 0.00772002058672, 0.0112488083889, 
0.00908907291456, 0.0157722638969, 0.00994270306707, 0.0134179772039, 
0.0126050420168, 0.0113648781554, 0.0153894803415, 0.0126959699913, 
0.0116655865198, 0.0112065745237, 0.0122006737686, 0.010251878038, 
0.010891174691, 0.0148273273273, 0.0138516532618, 0.0136552722011, 
0.00986993819758, 0.0097852677358, 0.00889011089726, 0.00816723383568, 
0.00917641660931, 0.00884466556108, 0.0182179529646, 0.0183156760639, 
0.0217806648835, 0.0171099125907, 0.0186579938377, 0.019360390076, 
0.0144603654529, 0.0177730696798, 0.0153226598566, 0.0134016909516, 
0.0126480805202, 0.0115501519757, 0.0127156322248, 0.0124326204138, 
0.0240245215806, 0.0130234933606, 0.0144222706691, 0.00854005693371, 
0.0053560967445, 0.00504132231405, 0.00288778877888, 0.00593526847816, 
0.00455653279644, 0.00433014040152, 0.00535770564135, 0.0131095962244, 
0.0126319758673, 0.0154982879798, 0.0125940464508, 0.0169948745616, 
0.0257535512184, 0.0256175663312, 0.0265191262043, 0.0228974403622, 
0.0193122555411, 0.0165794768612, 0.015658837248, 0.0168208578638, 
0.0129912843282, 0.0119498443154, 0.0112663755459, 0.00838112042347, 
0.00925767186696, 0.0113408269771, 0.0210861519924, 0.0156036134684, 
0.0121687119728, 0.011006497812, 0.0107891491985, 0.0134615384615, 
0.0147229755909, 0.015756893641, 0.0176257128046, 0.016776075857, 
0.0169553999263, 0.0179193118984, 0.0190055672874, 0.0183088625509, 
0.0155489923558, 0.0152507401094, 0.0160748342567, 0.0161532350605, 
0.0139190952588, 0.0161469457497, 0.0118186629035, 0.0109259765092, 
0.00950587391265, 0.00928986154533, 0.00815520645549, 0.00702576112412, 
0.00709539362541, 0.00827287768869, 0.0104688211197, 0.0130375888927, 
0.0160891089109, 0.0188415910677, 0.0203265044814, 0.0183175033921, 
0.0139940353292, 0.0124648170487, 0.0131685758095, 0.00957428620277, 
0.0119647893342, 0.00835800104475, 0.0101892285298, 0.00904207699194, 
0.00772134522992, 0.00740740740741, 0.00776823249863, 0.00642254601227, 
0.00484237572883, 0.00361539964823, 0.00414811817078, 0.00358072916667, 
0.00433306007729, 0.00485008818342, 0.00905280804694, 0.00931847250137, 
0.00779271381259, 0.00779912497622, 0.00908230842006, 0.0058152538582, 
0.0102777777778, 0.00807537012113, 0.00648535564854, 0.0145492582731, 
0.00694127317563, 0.00759878419453, 0.00789242911429, 0.00635050701629, 
0.00785233530492, 0.00607964332759, 0.00531968282646, 0.00361944157187, 
0.00305157155935, 0.00276327909119, 0.00318820364651, 0.00184464029514, 
0.00412550211703, 0.00516567972786, 0.00463655399342, 0.00702897308418, 
0.0100714154917, 0.00791168353266, 0.00959190791768, 0.00736, 
0.00738007380074, 0.012573964497, 0.0117919562013, 0.00842919476398, 
0.00778887565289, 0.00623967700496, 0.0062232955601, 0.00447815755803, 
0.00511135450894, 0.00502557659517, 0.00330328263712), .Tsp = c(1, 
15.9583333333333, 24), class = "ts")

T2 <- structure(c(0, 0, 0, 0, 0.000109673173942, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.66183574879e-05, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.43930526713e-05, 
0, 0, 0, 8.95255147717e-05, 0, 0, 0, 0, 0.000191699415317, 0.000207792207792, 
0, 0, 0, 0.00019727756954, 0.000205338809035, 0.000205423171734, 
0.000704225352113, 0.000450180072029, 0.000493218249075, 0.000120860526952, 
0.000410846343468, 0.000384393619066, 0.000643264105863, 0.000189915487608, 
0.000915499404925, 0.000185099490976, 0.000936568752661, 0.000451385754266, 
0.000757217226692, 0.000273722627737, 0.000187020759304, 0.000211565585331, 
0.000141823854772, 9.63948332369e-05, 0.000117536436295, 0.000287150035894, 
0, 0, 0.000400320256205, 0.000388048117967, 0.000345721694036, 
0.000296868042155, 0.000609533097647, 0.000424043252412, 0.000290360046458, 
0.000546996079861, 0.000556534644282, 0.00036866359447, 0.000275077938749, 
0.000964404699281, 0.00152310035539, 0.00113339145597, 0.00061570938517, 
0.000362877619523, 0.000472634464505, 0.000102923013586, 0.000187511719482, 
0.000294869274622, 0.00011522064754, 0.000248787162582, 0, 0.00035593521979, 
0.000392233771328, 0.000551166636046, 0.000165727543918, 0.000143472022956, 
0.00012030798845, 0.000438260107374, 0.000195713866327, 0.000184009568498, 
0.000537297394108, 0.000365096750639, 0.000102480016397, 0.000452857531021, 
0.000180848177955, 0.000770745910765, 0.00219818869252, 0.000357685773048, 
0.000362023712553, 0.000660501981506, 0.000419709560984, 0.000488949735967, 
0.00177758026886, 4e-04, 0.000475661962898, 0.000879816998064, 
0.0014942099365, 0.00378173960022, 0.00274725274725, 0.00192545729611, 
0.0016462841016, 0.00176238855484, 0.00260780478718, 0.00447289949132, 
0.0034435261708, 0.00290522941294, 0.002694416055, 0.0041329904482, 
0.00729244577412, 0.0296930503689, 0.00982375036117, 0.00453023439039, 
0.00327031170158, 0.00221573169503, 0.00211237853823, 0.00108719286801, 
0.00131815458358, 0.000983008004494, 0.00132253265002, 0.00227790432802, 
0.00247054351957, 0.00307455803228, 0.0029314767314, 0.00222755311857, 
0.00492610837438, 0.00454430699318, 0.00753880266075, 0.00671845475541, 
0.00590490003108, 0.00288356368698, 0.00294736842105, 0.00248601615911, 
0.00197089144936, 0.00326157860404, 0.00302866414278, 0.00202256759634, 
0.00258788009489, 0.00169043845747, 0.00137000737696, 0.000433463372345, 
0.000908368343363, 0.000805585392052, 0.00142653352354, 0.00189328743546, 
0.00558347292016, 0.00161899622234, 0.00162631008312, 0.00276960360048, 
0.00585673524553, 0.00519169329073, 0.0045125282033, 0.00562344544176, 
0.00322815786733, 0.00330528846154, 0.00255439924314, 0.00285823170732, 
0.00240894199268, 0.00218735140276, 0.00201826045171, 0.00168701002282, 
0.000460617227084, 0.00127007166833, 0.00109529025192, 0.000819336337567, 
0.00158170093685, 0.000588494924231, 0.00120089209127, 0.00305052430887, 
0.00161583518481, 0.00211579149837, 0.0010111223458, 0.00346270379455, 
0.00228091236495, 0.00207627581685, 0.00295140718878, 0.0022121765894, 
0.00240718451995, 0.00224131490474, 0.0031867431485, 0.00176756517897, 
0.00233382314807, 0.00178303303303, 0.00169794459339, 0.00162778079219, 
0.000737939304492, 0.00135906496331, 0.000733205022454, 0.000875060768109, 
0.00114705207616, 0.000967385295744, 0.00182179529646, 0.00359130903214, 
0.00420328620558, 0.00446345545843, 0.00376583361862, 0.00659687365553, 
0.00433810963586, 0.00353107344633, 0.00333955407131, 0.00341788091383, 
0.0024939877082, 0.00538428137212, 0.00906989151698, 0.00773778473309, 
0.0210421671775, 0.00859720803541, 0.00511487506289, 0.00406669377796, 
0.00117164616286, 0.00206611570248, 0.00107260726073, 0.00148381711954, 
0.000741761152909, 0.00104973100643, 0.00110305704381, 0.00209753539591, 
0.00452488687783, 0.00486574157506, 0.00850507033039, 0.0101159967629, 
0.0163991223005, 0.0150452373691, 0.0156443766097, 0.0112310639039, 
0.00635593220339, 0.00627766599598, 0.00583041812427, 0.00622371740959, 
0.00624897220852, 0.00420769166036, 0.00305676855895, 0.00291133656815, 
0.00120006857535, 0.00501806503412, 0.00490575781048, 0.00593119810202, 
0.00226874291018, 0.00304999336958, 0.00339087546239, 0.00541958041958, 
0.00445563734986, 0.00431438754455, 0.0038016243304, 0.0037928519329, 
0.00491460867428, 0.00460782305959, 0.00508734881935, 0.00300725278613, 
0.00390896455872, 0.00367811967345, 0.00953591862683, 0.00529614264278, 
0.00243584167029, 0.00427167876976, 0.00291056623743, 0.00227624510607, 
0.00439422473321, 0.00232246538633, 0.00317623830372, 0.00263466042155, 
0.00180200473026, 0.00190912562047, 0.0034896070399, 0.00338638672536, 
0.00548090523338, 0.00697836706211, 0.00720230473752, 0.00746268656716, 
0.00367056664373, 0.0032167269803, 0.00523135203391, 0.00299196443837, 
0.00299119733356, 0.00287306285913, 0.00154657933042, 0.00214861235452, 
0.00163006177076, 0.00157407407407, 0.00137086455858, 0.00124616564417, 
0.000790591955727, 0.00107484854407, 0.00121408336706, 0.00108506944444, 
0.00105398758637, 0.000881834215168, 0.00184409052808, 0.00237529691211, 
0.0013637249172, 0.00190222560396, 0.00264900662252, 0.00156564526951, 
0.00263888888889, 0.00183531139117, 0.00303347280335, 0.0120768352986, 
0.00365330167139, 0.00351443768997, 0.00263080970476, 0.0029703984431, 
0.00265143789517, 0.0014185834431, 0.00150557061126, 0.00144777662875, 
0.00111890957176, 0.000716405690308, 0.000797050911627, 0.000512400081984, 
0.000868526761481, 0.00113392969636, 0.00134609632067, 0.00240013715069, 
0.00128181651712, 0.00110395584177, 0.00156958493198, 0.00208, 
0.00184501845018, 0.00110946745562, 0.000736997262582, 0.00208250694169, 
0.00229084578026, 0.00137639933933, 0.00111462010032, 0.000822518735149, 
0.00200803212851, 0.000987166831194, 0.00041291032964), .Tsp = c(1, 
15.9583333333333, 24), class = "ts")

T3 <- structure(c(0.00192287148809, 0.00149812734082, 0.00192410475681, 
0.00151122625216, 0.00120640491336, 0.00167845582065, 0.00121261115602, 
0.000802568218299, 0.00109170305677, 0.00250626566416, 0.00273597811218, 
0.00242854474127, 0.00160915430002, 0.00124571784491, 0.00192943770673, 
0.00329388800781, 0.00191032700303, 0.00156168662155, 0.00174753289474, 
0.0014917951268, 0.00143639464943, 0.000543773790103, 0.000929525097178, 
0.00141560496294, 0.000966183574879, 0.000719359769805, 0.00190740419629, 
0.00137804317869, 0.00197177251972, 0.001443001443, 0.00203399680372, 
0.00158954433063, 0.00256562068285, 0.00228310502283, 0.00302053966975, 
0.00227352221056, 0.00263239393001, 0.00202608585539, 0.00272386789241, 
0.00269206875129, 0.0027045300879, 0.00276480122033, 0.00405890126487, 
0.00341070582662, 0.00351591413768, 0.00336004135436, 0.00358102059087, 
0.00257289879931, 0.00235733228563, 0.00239624269146, 0.00136103801833, 
0.000862647368926, 0.00145454545455, 0.00168959691045, 0.00246305418719, 
0.0020964360587, 0.00335371868219, 0.00390143737166, 0.00349219391947, 
0.00334507042254, 0.00255102040816, 0.00332922318126, 0.00386753686246, 
0.00246507806081, 0.00432442821449, 0.00312442565705, 0.00408318298357, 
0.00375354756019, 0.00416473854697, 0.00263942103023, 0.0028888688273, 
0.00321817321344, 0.00310218978102, 0.002150738732, 0.00296191819464, 
0.00134732662034, 0.00221708116445, 0.00152797367184, 0.00157932519742, 
0.00220077873709, 0.00207100591716, 0.00260208166533, 0.00310438494373, 
0.00311149524633, 0.00385928454802, 0.00292575886871, 0.00222622707516, 
0.00329074719319, 0.00282614641262, 0.00287542899545, 0.00221198156682, 
0.00311754997249, 0.00315623356128, 0.00287696733796, 0.00296425457716, 
0.00263875450787, 0.00208654631226, 0.00179601096512, 0.00164676821737, 
0.00206262891431, 0.00235895419697, 0.00241963359834, 0.0028610523697, 
0.00516910352976, 0.00160170848905, 0.00254951951363, 0.00275583318023, 
0.00298309579052, 0.00286944045911, 0.00288739172281, 0.00394434096636, 
0.00254428026226, 0.00285214831171, 0.0034924330617, 0.00246440306681, 
0.00266448042632, 0.00389457476678, 0.00253187449136, 0.00171276869059, 
0.00184647850171, 0.00134132164893, 0.00153860077835, 0.000990752972259, 
0.00117518677075, 0.00312927831019, 0.00188867903566, 0.0024, 
0.00269541778976, 0.00263945099419, 0.00242809114681, 0.00378173960022, 
0.00274725274725, 0.00165039196809, 0.00211665098777, 0.00290275761974, 
0.00149017416411, 0.00105244693913, 0.00309917355372, 0.00240432779002, 
0.00297314875035, 0.0015613519471, 0.00196335078534, 0.00227707441479, 
0.00279302706347, 0.00295450068938, 0.00316811446091, 0.00211501661799, 
0.00168990283059, 0.00195694716243, 0.00131815458358, 0.00112343771942, 
0.00214911555629, 0.00157701068863, 0.00171037628278, 0.00230591852421, 
0.00183217295713, 0.00102810143934, 0.00130396986381, 0.00151476899773, 
0.00188470066519, 0.00220449296662, 0.00238267895991, 0.00238639753406, 
0.00147368421053, 0.00113942407292, 0.0018192844148, 0.00152207001522, 
0.00151433207139, 0.00117096018735, 0.000862626698296, 0.00095087163233, 
0.00137000737696, 0.00119202427395, 0.00170319064381, 0.000805585392052, 
0.0012680297987, 0.00189328743546, 0.00186115764005, 0.000719553876597, 
0.000903505601735, 0.000865501125151, 0.00210241778045, 0.00146432374867, 
0.00130625816411, 0.0011895749973, 0.00135374362178, 0.00120192307692, 
0.00160832544939, 0.0015243902439, 0.00240894199268, 0.00218735140276, 
0.00230658337338, 0.00188548179022, 0.0016582220175, 0.00263086274154, 
0.00155166119022, 0.00204834084392, 0.00194670884536, 0.00308959835221, 
0.00154400411734, 0.00152526215443, 0.00343364976772, 0.00269282554337, 
0.00235928547354, 0.00230846919636, 0.00300120048019, 0.00327833023713, 
0.00347844418678, 0.00259690295277, 0.00157392833997, 0.00345536047815, 
0.00336884275699, 0.0023862129916, 0.00216094735932, 0.00478603603604, 
0.00330652368186, 0.00551636824019, 0.00313624204409, 0.00253692126484, 
0.00201631381175, 0.00243072435586, 0.00229410415233, 0.00386954118297, 
0.00298111957602, 0.00305261267732, 0.0038211692778, 0.00334759159383, 
0.00479287915098, 0.0045891294995, 0.00525831471014, 0.00800376647834, 
0.0076613299283, 0.00638604065479, 0.00587868531219, 0.00633955709944, 
0.00453494575849, 0.00617283950617, 0.00314804075884, 0.00425604358189, 
0.00536642629549, 0.00422936152908, 0.00234329232572, 0.00454545454545, 
0.00305280528053, 0.00389501993879, 0.0040267034015, 0.00275554389188, 
0.00409706901986, 0.00506904387345, 0.0065987933635, 0.00594701748063, 
0.00343473994112, 0.00579983814405, 0.00750664048966, 0.00365965233303, 
0.00467423447486, 0.00348250043531, 0.00464471968709, 0.00603621730382, 
0.00358154256205, 0.00445752733389, 0.00501562243052, 0.0035344609947, 
0.00410480349345, 0.00467578297309, 0.00265729470255, 0.00210758731433, 
0.00223771408899, 0.00218998083767, 0.00309374033206, 0.00291738496221, 
0.00184956843403, 0.00297202797203, 0.00329329717164, 0.00318889514162, 
0.00397442543632, 0.00481400437637, 0.002580169554, 0.00440303092361, 
0.00335956997504, 0.00318415000884, 0.00269284225156, 0.00242217637032, 
0.00381436745073, 0.00238326418925, 0.0037407568508, 0.00290474156343, 
0.00335156112189, 0.00227624510607, 0.00376647834275, 0.00223313979455, 
0.00197441840501, 0.00214676034348, 0.00225250591283, 0.00140002545501, 
0.0034896070399, 0.00220115137149, 0.002828854314, 0.00418702023726, 
0.00176056338028, 0.00393487109905, 0.00217939894471, 0.00331724969843, 
0.00234508884279, 0.00282099504189, 0.00239295786685, 0.00269893783737, 
0.00263828238719, 0.00250671441361, 0.00231640356898, 0.00231481481481, 
0.00127947358801, 0.0017254601227, 0.00207530388378, 0.00185655657612, 
0.00131525698098, 0.00227864583333, 0.0018737557091, 0.00220458553792, 
0.00184409052808, 0.00109629088251, 0.00253263198909, 0.00228267072475, 
0.00170293282876, 0.00134198165958, 0.000833333333333, 0.00269179004038, 
0.00198744769874, 0.00209205020921, 0.00146132066855, 0.00113981762918, 
0.00185131053298, 0.00194612311789, 0.00203956761167, 0.00111460127673, 
0.00170631335943, 0.00186142709411, 0.00183094293561, 0.00194452973084, 
0.0014944704593, 0.00153720024595, 0.00184561936815, 0.00151190626181, 
0.000897397547113, 0.00222869878279, 0.00201428309833, 0.00202391904324, 
0.00244157656087, 0.00256, 0.00184501845018, 0.00160256410256, 
0.00115813855549, 0.0016858389528, 0.001741042793, 0.0026610387227, 
0.00167193015047, 0.00201060135259, 0.00219058050383, 0.00233330341919, 
0.000963457435827), .Tsp = c(1, 15.9583333333333, 24), class = "ts")

Tôi biết rằng T1 và T2 có mối tương quan và coi chúng là sự thật mặt đất nên bất kỳ số liệu khoảng cách nào cũng sẽ cho tôi biết rằng (T1, T2) gần hơn so với (T2, T3) và (T1, T3). Tuy nhiên, khi sử dụng dtwtrong R, tôi nhận được như sau:

> dtw(T1, T2, k = TRUE)$distance; dtw(T1, T3, k = TRUE)$distance; dtw(T3, T2, k = TRUE)$distance
[1] 1.107791
[1] 1.568011
[1] 0.4102962

Ai đó có thể vui lòng giải thích cách sử dụng Độ cong thời gian động cho các truy vấn lân cận gần nhất không?


1
Bạn có thể giải thích ý của bạn về "truy vấn hàng xóm gần nhất" trong ngữ cảnh này không và nó liên quan đến dtw như thế nào?
whuber

@whuber: Ấn tượng của tôi về DTW là nó là một thước đo khoảng cách cho chuỗi thời gian. Và có bài báo này chỉ ra rằng: Faster Retrieval with a Two-Pass Dynamic-Time-Warping Lower Boundbởi Daniel Lemire et. al với mã được cung cấp tại code.google.com/p/lbimproved Tuy nhiên, tôi đang cố gắng hiểu số liệu này trước khi sử dụng nó.
Truyền thuyết

Câu trả lời:


22

Độ cong thời gian động tạo ra một giả định cụ thể trên tập dữ liệu của bạn: một vectơ là một chuỗi phân tầng thời gian phi tuyến tính của cái kia. Nhưng nó cũng giả định rằng các giá trị thực tế nằm trên cùng một tỷ lệ.

x=1..10000a(x)=1sin(0.01x)b(x)=1sin(0.01234x)c(x)=1000sin(0.01x)

abacacab

DTW không phải là vũ khí ma thuật của bạn để giải quyết tất cả các nhu cầu phù hợp với chuỗi thời gian của bạn. Nó đưa ra các giả định cụ thể về loại tương tự mà bạn quan tâm . Nếu điều đó không khớp với dữ liệu của bạn, nó sẽ không hoạt động tốt. Đánh giá từ chuỗi dữ liệu bạn đã chia sẻ, bạn không cần căn chỉnh thời gian (mà DTW thực hiện), nhưng thực tế một số biến đổi chuẩn hóa phù hợp và có thể thay đổi phạm vi. Treshkeep băng qua khoảng cách cũng có thể làm việc tốt cho bạn, xem ví dụ:

  • Tìm kiếm sự tương đồng trên chuỗi thời gian dựa trên các câu hỏi ngưỡng ngưỡng
    Julian Aßfache, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey Pryakhin và Matthias Renz, EDBT 2006

+1 Cảm ơn bạn đã góp ý. Bạn cũng có thể chỉ cho tôi một số công việc về biến đổi Fourier? Và cuối cùng, tôi đã tự hỏi - có bất kỳ triển khai thực tế nào ngoài đó mà tôi có thể thử không? Ý tôi là, một số cơ sở dữ liệu thực sự thực hiện điều này trong hành động.
Truyền thuyết

1
Khi tìm kiếm thêm về điều này, tôi đã xem qua tác phẩm đại diện biểu tượng SAX từ Keogh et. al của Univ. của bờ sông. Bạn sẽ có bất kỳ ý kiến ​​về điều đó?
Truyền thuyết

Một người bạn đã thử nghiệm SAX cho chuỗi thời gian chuyển động (tức là phân loại chuyển động). Nó không làm việc cho anh ta. Đó là lý do tại sao tôi không đề xuất nó. Keogh tạo ra những bài báo như điên, nhưng IMHO không thuyết phục lắm. Anh ta phải đề xuất ít nhất 10 lần điều khiển khoảng cách cho chuỗi thời gian, tất nhiên tất cả đều vượt trội so với nhau.
Anony-Mousse -Reinstate Monica

2
@Anony Tôi có một chút hứng khởi với vụng trộm Keogh tạo ra những bài báo như điên, nhưng họ không thuyết phục lắm IMHO. Anh ta phải đề xuất ít nhất 10 hàm khoảng cách cho chuỗi thời gian, tất nhiên tất cả đều vượt trội so với nhau. Tôi không đề xuất các hàm khoảng cách ít nhất 10 cho chuỗi thời gian. Tôi ủng hộ mạnh mẽ cho 2 hàm khoảng cách cho chuỗi thời gian 1) Khoảng cách Euclide (ED): hai nghìn năm 2) DTW: 50 năm Hai biện pháp đó được sử dụng trong 90% bài báo của tôi và tôi cũng không đề xuất hay phát minh. Tôi đã đề xuất những thay đổi nhỏ cho cả ED và DTW. Bạn nói rằng họ không thuyết phục được IMHO. ...

2
Tôi thử nghiệm với các thử nghiệm có thể lặp lại trên mọi tập dữ liệu công khai trên thế giới và cho đi tất cả mã của tôi. Có thể một số người dân ở đây đang gặp khó khăn khi sử dụng một trong những ý tưởng của tôi, nhưng hơn 2.000 người đã sử dụng thành công một trong những ý tưởng của tôi (đánh Google lên) nên có thể vấn đề không nằm ở ý tưởng.

4

Trong những năm 1980, cong vênh thời gian động là phương pháp được sử dụng để khớp mẫu trong nhận dạng giọng nói. Mục đích là để cố gắng khớp chuỗi thời gian của bài phát biểu được phân tích với các mẫu được lưu trữ, thường là toàn bộ từ. Khó khăn là mọi người nói ở mức giá khác nhau. DTW đã được sử dụng để đăng ký mẫu chưa biết vào mẫu. Nó được gọi là "tấm cao su" phù hợp. Về cơ bản, bạn tìm kiếm thông qua một số khả năng bị hạn chế về cách chuỗi thời gian có thể được kéo dài cục bộ để tối ưu hóa sự phù hợp toàn cầu. Cách tiếp cận này đã được chứng minh là khá giống với các mô hình Markov ẩn.


4

Đầu tiên, bạn nói "số liệu cong vênh thời gian động", tuy nhiên DTW là thước đo khoảng cách, nhưng không phải là số liệu (nó không tuân theo bất đẳng thức tam giác).

Paper [a] so sánh DTW với 12 lựa chọn thay thế trên 43 bộ dữ liệu, DTW thực sự hoạt động rất tốt cho hầu hết các vấn đề.

Nếu bạn muốn tìm hiểu thêm về DTW, bạn có thể xem lướt qua hướng dẫn của Keoghs http://www.cs.ucr.edu/~eamonn/Keogh_Time_Series_CDrom.zip (cảnh báo 500 meg)

Đường chuyền là chốt.

Ngoài ra còn có một hướng dẫn về SAX http://www.cs.ucr.edu/~eamonn/SIGKDD_2007.ppt

[a] Xiaoyue Wang, Hui Đinh, Goce Trajcevski, Peter Scheuermann, Eamonn J. Keogh: So sánh thử nghiệm các phương pháp biểu diễn và đo khoảng cách cho dữ liệu chuỗi thời gian CoRR abs / 1012.2789: (2010)


+1 Cảm ơn bạn rất nhiều vì câu trả lời của bạn. Tôi đã sửa chữa câu hỏi của tôi. Đến bây giờ, tôi hiểu bạn là người tiên phong trong chuỗi thời gian. Sẽ thật tuyệt nếu bạn có một số gợi ý về trường hợp cụ thể của tôi mà tôi đã đưa vào một trong các ý kiến: Dữ liệu chuỗi thời gian mà tôi có là của một mạng giống như twitter nội bộ và chính chuỗi đó đại diện cho số lượng tin nhắn được tạo trên một cụ thể đề tài. Tôi muốn tìm các chủ đề khác có dòng thời gian tương tự như chủ đề đã cho. Cảm ơn bạn một lần nữa cho thời gian của bạn.
Truyền thuyết
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.