Máy ảnh: tại sao tổn thất giảm trong khi val_loss tăng?


12

Tôi thiết lập một tìm kiếm lưới cho một loạt các params. Tôi đang cố gắng tìm các tham số tốt nhất cho mạng lưới thần kinh Keras có phân loại nhị phân. Đầu ra là 1 hoặc 0. Có khoảng 200 tính năng. Khi tôi thực hiện tìm kiếm dạng lưới, tôi nhận được một loạt các mô hình và các tham số của chúng. Mô hình tốt nhất có các tham số sau:

Epochs           : 20
Batch Size       : 10
First Activation : sigmoid
Learning Rate    : 1
First Init       : uniform

và kết quả cho mô hình đó là:

        loss       acc  val_loss   val_acc
1   0.477424  0.768542  0.719960  0.722550
2   0.444588  0.788861  0.708650  0.732130
3   0.435809  0.794336  0.695768  0.732682
4   0.427056  0.798784  0.684516  0.721137
5   0.420828  0.803048  0.703748  0.720707
6   0.418129  0.806206  0.730803  0.723717
7   0.417522  0.805206  0.778434  0.721936
8   0.415197  0.807549  0.802040  0.733849
9   0.412922  0.808865  0.823036  0.731761
10  0.410463  0.810654  0.839087  0.730410
11  0.407369  0.813892  0.831844  0.725252
12  0.404436  0.815760  0.835217  0.723102
13  0.401728  0.816287  0.845178  0.722488
14  0.399623  0.816471  0.842231  0.717514
15  0.395746  0.819498  0.847118  0.719541
16  0.393361  0.820366  0.858291  0.714873
17  0.390947  0.822025  0.850880  0.723348
18  0.388478  0.823341  0.858591  0.721014
19  0.387062  0.822735  0.862971  0.721936
20  0.383744  0.825762  0.880477  0.721322

Vì vậy, tôi chạy lại mô hình đó với nhiều kỷ nguyên hơn (150 trong số đó) và đây là những kết quả tôi nhận được. Tôi không chắc tại sao điều này lại xảy ra, điều này là bình thường hay tôi đang làm gì sai?

Âm mưu của sự mất mát, acc, val_locc và val_acc

         loss       acc  val_loss   val_acc
1    0.476387  0.769279  0.728492  0.722550
2    0.442604  0.789941  0.701136  0.730472
3    0.431936  0.796915  0.676995  0.723655
4    0.426349  0.800258  0.728562  0.721997
5    0.421143  0.803653  0.739789  0.716900
6    0.416389  0.807575  0.720850  0.711373
7    0.413163  0.809154  0.751340  0.718128
8    0.409013  0.811418  0.780856  0.723409
9    0.405871  0.813576  0.789046  0.719295
10   0.402579  0.815524  0.804526  0.720278
11   0.400152  0.816813  0.811905  0.719541
12   0.400304  0.817261  0.787449  0.713154
13   0.397917  0.817945  0.804222  0.721567
14   0.395266  0.819524  0.801722  0.723348
15   0.393957  0.820156  0.793889  0.719049
16   0.391780  0.821103  0.794179  0.721199
17   0.390206  0.822393  0.806803  0.722611
18   0.388075  0.823604  0.817850  0.723901
19   0.385985  0.824762  0.841883  0.722058
20   0.383762  0.826867  0.857071  0.720830
21   0.381493  0.827947  0.864432  0.718005
22   0.379520  0.829210  0.872835  0.720400
23   0.377488  0.830526  0.879962  0.721383
24   0.375619  0.830736  0.887850  0.723839
25   0.373684  0.832000  0.891267  0.724822
26   0.372023  0.832368  0.891562  0.724638
27   0.370155  0.833184  0.892528  0.724883
28   0.368511  0.834684  0.887061  0.724699
29   0.366522  0.835606  0.883541  0.724883
30   0.364500  0.836422  0.882823  0.724515
31   0.362612  0.836737  0.882611  0.722427
32   0.360742  0.837448  0.884282  0.720769
33   0.359093  0.838738  0.884339  0.719418
34   0.357436  0.839080  0.888006  0.716470
35   0.355723  0.840633  0.892658  0.713830
36   0.354305  0.840764  0.897303  0.710575
37   0.352758  0.841343  0.901147  0.709408
38   0.351414  0.842054  0.899546  0.707934
39   0.349619  0.843370  0.905133  0.704864
40   0.347993  0.844475  0.910400  0.701363
41   0.346402  0.845581  0.915086  0.699337
42   0.345014  0.845818  0.918697  0.697617
43   0.343708  0.846607  0.923413  0.695652
44   0.342335  0.847292  0.930816  0.693441
45   0.340745  0.848081  0.940737  0.689020
46   0.339623  0.848713  0.948633  0.685274
47   0.338846  0.849845  0.952492  0.683923
48   0.337724  0.850134  0.961147  0.683984
49   0.336247  0.850976  0.967792  0.683309
50   0.334444  0.851529  0.984107  0.680238
51   0.333086  0.852029  1.001179  0.678273
52   0.331756  0.853240  1.016130  0.674589
53   0.330738  0.854003  1.024875  0.673606
54   0.329548  0.854030  1.040597  0.670044
55   0.328813  0.855372  1.041871  0.668509
56   0.327120  0.855898  1.050617  0.668755
57   0.325962  0.855819  1.064525  0.666667
58   0.324602  0.856898  1.078078  0.662859
59   0.323560  0.857241  1.085016  0.661938
60   0.322243  0.858662  1.093114  0.661140
61   0.320680  0.858872  1.117269  0.656841
62   0.319267  0.860004  1.138825  0.654815
63   0.318132  0.860636  1.154959  0.653648
64   0.316956  0.861531  1.180216  0.649718
65   0.315543  0.862320  1.198216  0.648428
66   0.314405  0.862610  1.218663  0.647384
67   0.313501  0.863873  1.245123  0.644252
68   0.312513  0.864558  1.262998  0.643147
69   0.311567  0.865347  1.283213  0.641918
70   0.310069  0.866505  1.302089  0.640752
71   0.309087  0.866611  1.318972  0.641857
72   0.307767  0.867321  1.361531  0.638787
73   0.306750  0.866742  1.382162  0.638357
74   0.305760  0.867242  1.378694  0.641611
75   0.305289  0.867769  1.393187  0.642594
76   0.304089  0.868479  1.435852  0.635532
77   0.302472  0.869006  1.435019  0.639892
78   0.301118  0.869400  1.447060  0.639216
79   0.300629  0.870058  1.488730  0.634918
80   0.299364  0.870295  1.488376  0.636576
81   0.298380  0.870822  1.504260  0.634611
82   0.297253  0.871664  1.525655  0.634058
83   0.296760  0.871875  1.538717  0.632891
84   0.295502  0.872585  1.551178  0.633751
85   0.294569  0.872927  1.562323  0.633137
86   0.294780  0.872585  1.555390  0.629944
87   0.293796  0.872743  1.587800  0.627057
88   0.293029  0.873427  1.608010  0.627549
89   0.291822  0.874006  1.626047  0.627303
90   0.290643  0.874533  1.651658  0.626689
91   0.289920  0.875270  1.681202  0.623925
92   0.289661  0.875375  1.683188  0.626505
93   0.288103  0.876323  1.706517  0.625031
94   0.287917  0.876770  1.722031  0.624417
95   0.287020  0.877270  1.743283  0.624478
96   0.286750  0.877639  1.762506  0.624048
97   0.285712  0.877481  1.780433  0.622267
98   0.284635  0.878639  1.789917  0.622206
99   0.283627  0.879191  1.862468  0.616925
100  0.282214  0.879455  1.915643  0.612810
101  0.281749  0.879244  1.881444  0.615205
102  0.281710  0.879639  1.916390  0.614223
103  0.280293  0.880350  1.938470  0.612810
104  0.279233  0.881008  1.979127  0.609187
105  0.279204  0.880297  1.997384  0.606546
106  0.278264  0.881876  2.009851  0.607652
107  0.277511  0.882876  2.038530  0.606116
108  0.277521  0.881771  2.034664  0.604888
109  0.276264  0.882534  2.058179  0.604827
110  0.275230  0.883587  2.078912  0.604274
111  0.275147  0.883034  2.073272  0.603537
112  0.273717  0.883797  2.100150  0.600958
113  0.273372  0.883692  2.114416  0.601634
114  0.272626  0.883692  2.129778  0.601941
115  0.272001  0.883929  2.138462  0.601326
116  0.271344  0.884508  2.148771  0.602923
117  0.270134  0.884692  2.115114  0.604581
118  0.269494  0.885140  2.135719  0.603107
119  0.268803  0.885587  2.162380  0.601695
120  0.268593  0.886219  2.183793  0.599239
121  0.267141  0.886035  2.195810  0.600221
122  0.266565  0.886772  2.192426  0.600528
123  0.265715  0.886561  2.260088  0.596598
124  0.264788  0.887693  2.253029  0.597335
125  0.263643  0.887693  2.289285  0.597028
126  0.263612  0.887956  2.311600  0.596536
127  0.261996  0.888588  2.339754  0.595063
128  0.263069  0.887588  2.364881  0.594449
129  0.261684  0.889272  2.321568  0.596598
130  0.261304  0.889509  2.389324  0.591562
131  0.260336  0.889640  2.403542  0.593098
132  0.259131  0.890272  2.413964  0.592115
133  0.258756  0.890193  2.422454  0.591992
134  0.257794  0.891009  2.454598  0.591255
135  0.257187  0.891009  2.459366  0.590088
136  0.257249  0.891088  2.448625  0.591624
137  0.256344  0.891404  2.495104  0.589167
138  0.255590  0.891720  2.495032  0.589781
139  0.254596  0.892299  2.496050  0.589229
140  0.254308  0.892588  2.510471  0.589536
141  0.253694  0.892509  2.519580  0.589720
142  0.252973  0.893088  2.527464  0.590273
143  0.252714  0.893194  2.553902  0.589106
144  0.252190  0.893720  2.536494  0.590457
145  0.251870  0.893352  2.553102  0.588799
146  0.250437  0.893694  2.565141  0.589597
147  0.250066  0.894141  2.575599  0.588553
148  0.249596  0.894273  2.590722  0.588123
149  0.248569  0.894983  2.596031  0.588676
150  0.248096  0.895273  2.602810  0.588860

Trường hợp của bạn là lạ bởi vì mất xác nhận của bạn không bao giờ nhỏ hơn. Tỷ lệ học tập của bạn cao đáng ngờ, tỷ lệ học tập điển hình là khoảng 0,001. Phạm vi tỷ lệ học tập bạn đã sử dụng trong tìm kiếm lưới?
Hugh

1
Tôi đã sử dụng [1.000, 0.100, 0.010, 0,001]
user1367204

Điều này có thể hơi muộn, nhưng bạn có chắc rằng dữ liệu của bạn là những gì bạn nghĩ? Cụ thể, điều rất kỳ lạ là độ chính xác xác nhận của bạn bị đình trệ, trong khi mất xác thực đang tăng lên, bởi vì hai giá trị đó sẽ luôn luôn di chuyển cùng nhau, ví dụ. sự giảm giá trị tổn thất nên được kết hợp với độ chính xác tăng theo tỷ lệ. Bạn có thể thấy rằng trong trường hợp mất đào tạo. Khi tổn thất đào tạo đang giảm nên độ chính xác càng tăng. Tuy nhiên đây không phải là trường hợp của dữ liệu xác nhận bạn có. Do đó, tôi chắc chắn sẽ xem xét cách bạn đang bị mất xác nhận và ac
matt_m

Câu trả lời:


16

(đây có thể là một bản sao) Có vẻ như mô hình của bạn quá phù hợp, đó chỉ là ghi nhớ dữ liệu đào tạo. Nói chung, một mô hình phù hợp hơn có thể được cải thiện bằng cách thêm nhiều học sinh bỏ học, hoặc đào tạo và xác nhận trên một tập dữ liệu lớn hơn. Giải thích thêm về dữ liệu / tính năng và mô hình cho các ý tưởng khác.


3
Đó là một quá nhiều đặc biệt. val_loss không bao giờ giảm như thể không có sự phù hợp trước khi bắt đầu quá mức. Bạn có biết những gì có thể giải thích điều đó?
Hugh

3

Có lẽ tập dữ liệu đào tạo của bạn có các thuộc tính khác với tập dữ liệu xác nhận của bạn. Nó giống như đào tạo một mạng lưới để phân biệt giữa một con gà và một chiếc máy bay, nhưng sau đó bạn cho nó thấy một quả táo. Bạn càng huấn luyện nó, thì việc phân biệt gà với máy bay càng tốt, nhưng cũng tệ hơn khi nó được cho thấy một quả táo. Tôi đang có tình huống tương tự và đang nghĩ đến việc sử dụng Mạng đối thủ tạo để xác định xem điểm dữ liệu xác thực có "xa lạ" với tập dữ liệu huấn luyện hay không

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.