Tôi có một câu hỏi liên quan đến việc sử dụng biến nhóm trong mô hình phi tuyến tính. Vì hàm nls () không cho phép các biến nhân tố, tôi đã phải vật lộn để tìm hiểu xem liệu người ta có thể kiểm tra ảnh hưởng của một yếu tố đối với mô hình phù hợp hay không. Tôi đã bao gồm một ví dụ dưới đây nơi tôi muốn điều chỉnh mô hình tăng trưởng "theo mùa von vonalanalanffy" cho các phương pháp điều trị tăng trưởng khác nhau (thường được áp dụng nhất cho sự phát triển của cá). Tôi muốn kiểm tra tác động của hồ nơi cá lớn lên cũng như thức ăn được đưa ra (chỉ là một ví dụ nhân tạo). Tôi quen thuộc với một cách giải quyết cho vấn đề này - áp dụng mô hình so sánh thử nghiệm F phù hợp với dữ liệu gộp so với phù hợp riêng biệt như được phác thảo bởi Chen et al. (1992) (ARSS - "Phân tích tổng bình phương còn lại"). Nói cách khác, ví dụ dưới đây,
Tôi tưởng tượng có một cách đơn giản hơn để làm điều này trong R bằng cách sử dụng nlme (), nhưng tôi đang gặp vấn đề. Trước hết, bằng cách sử dụng biến nhóm, mức độ tự do cao hơn mức tôi có được với các mô hình riêng biệt. Thứ hai, tôi không thể lồng các biến nhóm - tôi không thấy vấn đề của mình ở đâu. Bất kỳ trợ giúp sử dụng nlme hoặc phương pháp khác được đánh giá rất cao. Dưới đây là mã cho ví dụ nhân tạo của tôi:
###seasonalized von Bertalanffy growth model
soVBGF <- function(S.inf, k, age, age.0, age.s, c){
S.inf * (1-exp(-k*((age-age.0)+(c*sin(2*pi*(age-age.s))/2*pi)-(c*sin(2*pi*(age.0-age.s))/2*pi))))
}
###Make artificial data
food <- c("corn", "corn", "wheat", "wheat")
lake <- c("king", "queen", "king", "queen")
#cornking, cornqueen, wheatking, wheatqueen
S.inf <- c(140, 140, 130, 130)
k <- c(0.5, 0.6, 0.8, 0.9)
age.0 <- c(-0.1, -0.05, -0.12, -0.052)
age.s <- c(0.5, 0.5, 0.5, 0.5)
cs <- c(0.05, 0.1, 0.05, 0.1)
PARS <- data.frame(food=food, lake=lake, S.inf=S.inf, k=k, age.0=age.0, age.s=age.s, c=cs)
#make data
set.seed(3)
db <- c()
PCH <- NaN*seq(4)
COL <- NaN*seq(4)
for(i in seq(4)){
age <- runif(min=0.2, max=5, 100)
age <- age[order(age)]
size <- soVBGF(PARS$S.inf[i], PARS$k[i], age, PARS$age.0[i], PARS$age.s[i], PARS$c[i]) + rnorm(length(age), sd=3)
PCH[i] <- c(1,2)[which(levels(PARS$food) == PARS$food[i])]
COL[i] <- c(2,3)[which(levels(PARS$lake) == PARS$lake[i])]
db <- rbind(db, data.frame(age=age, size=size, food=PARS$food[i], lake=PARS$lake[i], pch=PCH[i], col=COL[i]))
}
#visualize data
plot(db$size ~ db$age, col=db$col, pch=db$pch)
legend("bottomright", legend=paste(PARS$food, PARS$lake), col=COL, pch=PCH)
###fit growth model
library(nlme)
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
#fit to pooled data ("small model")
fit0 <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values
)
summary(fit0)
#fit to each lake separatly ("large model")
fit.king <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values,
subset=db$lake=="king"
)
summary(fit.king)
fit.queen <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values,
subset=db$lake=="queen"
)
summary(fit.queen)
#analysis of residual sum of squares (F-test)
resid.small <- resid(fit0)
resid.big <- c(resid(fit.king),resid(fit.queen))
df.small <- summary(fit0)$df
df.big <- summary(fit.king)$df+summary(fit.queen)$df
F.value <- ((sum(resid.small^2)-sum(resid.big^2))/(df.big[1]-df.small[1])) / (sum(resid.big^2)/(df.big[2]))
P.value <- pf(F.value , (df.big[1]-df.small[1]), df.big[2], lower.tail = FALSE)
F.value; P.value
###plot models
plot(db$size ~ db$age, col=db$col, pch=db$pch)
legend("bottomright", legend=paste(PARS$food, PARS$lake), col=COL, pch=PCH)
legend("topleft", legend=c("soVGBF pooled", "soVGBF king", "soVGBF queen"), col=c(1,2,3), lwd=2)
#plot "small" model (pooled data)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100))
pred <- predict(fit0, tmp)
lines(tmp$age, pred, col=1, lwd=2)
#plot "large" model (seperate fits)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100), lake="king")
pred <- predict(fit.king, tmp)
lines(tmp$age, pred, col=2, lwd=2)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100), lake="queen")
pred <- predict(fit.queen, tmp)
lines(tmp$age, pred, col=3, lwd=2)
###Can this be done in one step using a grouping variable?
#with "lake" as grouping variable
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
fit1 <- nlme(model = size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
fixed = S.inf + k + c + age.0 + age.s ~ 1,
group = ~ lake,
start=starting.values
)
summary(fit1)
#similar residuals to the seperatly fitted models
sum(resid(fit.king)^2+resid(fit.queen)^2)
sum(resid(fit1)^2)
#but different degrees of freedom? (10 vs. 21?)
summary(fit.king)$df+summary(fit.queen)$df
AIC(fit1, fit0)
###I would also like to nest my grouping factors. This doesn't work...
#with "lake" and "food" as grouping variables
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
fit2 <- nlme(model = size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
fixed = S.inf + k + c + age.0 + age.s ~ 1,
group = ~ lake/food,
start=starting.values
)
Tham khảo: Chen, Y., Jackson, DA và Harvey, HH, 1992. So sánh các hàm von Bertalanffy và đa thức trong mô hình hóa dữ liệu tăng trưởng của cá. 49, 6: 1228-1235.