Tôi là người dùng mới của WinBUGS và có một câu hỏi để được giúp đỡ. Sau khi chạy đoạn mã sau, tôi nhận được các tham số beta0
thông qua beta4
(số liệu thống kê, mật độ), nhưng tôi không biết làm thế nào để có được dự đoán về giá trị cuối cùng h
mà tôi đặt NA
để mô hình hóa trong mã.
Có ai có thể cho tôi một gợi ý? Bất kỳ lời khuyên sẽ được đánh giá rất cao.
model {
for(i in 1: N) {
CF01[i] ~ dnorm(0, 20)
CF02[i] ~ dnorm(0, 1)
h[i] ~ dpois (lambda [i])
log(lambda [i]) <- beta0 + beta1*CF03[i] + beta2*CF02[i] + beta3*CF01[i] + beta4*IND[i]
}
beta0 ~ dnorm(0.0, 1.0E-6)
beta1 ~ dnorm(0.0, 1.0E-6)
beta2 ~ dnorm(0.0, 1.0E-6)
beta3 ~ dnorm(0.0, 1.0E-6)
beta4 <- log(p)
p ~ dunif(lower, upper)
}
INITS
list(beta0 = 0, beta1 = 0, beta2 = 0, beta3 = 0, p = 0.9)
DATA(LIST)
list(N = 154, lower = 0.80, upper = 0.95,
h = c(1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 3, 0, 0, 0, 2, 0, 1, 0, 4, 2,
3, 0, 2, 1, 1, 2, 2, 2, 3, 4, 2, 3, 1, 0, 1, 3, 3, 3, 1, 0, 1,
0, 5, 2, 1, 2, 1, 3, 3, 1, 1, 0, 2, 2, 0, 3, 0, 0, 3, 2, 2, 2,
1, 0, 3, 3, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 0, 2, 1, 0, 0, 2, 5,
0, 2, 1, 0, 2, 1, 2, 2, 2, 0, 3, 2, 1, 3, 3, 3, 3, 0, 1, 3, 3,
3, 1, 0, 0, 1, 2, 1, 0, 1, 4, 1, 1, 1, 1, 2, 1, 3, 0, 0, 1, 1,
1, 1, 0, 2, 1, 0, 0, 1, 1, 5, 1, 1, 1, 3, 0, 1, 1, 1, 0, 2, 1,
0, 3, 3, 0, 0, 1, 2, 6, NA),
CF03 = c(-1.575, 0.170, -1.040, -0.010, -0.750,
0.665, -0.250, 0.145, -0.345, -1.915, -1.515,
0.215, -1.040, -0.035, 0.805, -0.860, -1.775,
1.725, -1.345, 1.055, -1.935, -0.160, -0.075,
-1.305, 1.175, 0.130, -1.025, -0.630, 0.065,
-0.665, 0.415, -0.660, -1.145, 0.165, 0.955,
-0.920, 0.250, -0.365, 0.750, 0.045, -2.760,
-0.520, -0.095, 0.700, 0.155, -0.580, -0.970,
-0.685, -0.640, -0.900, -0.250, -1.355, -1.330,
0.440, -1.505, -1.715, -0.330, 1.375, -1.135,
-1.285, 0.605, 0.360, 0.705, 1.380, -2.385, -1.875,
-0.390, 0.770, 1.605, -0.430, -1.120, 1.575, 0.440,
-1.320, -0.540, -1.490, -1.815, -2.395, 0.305,
0.735, -0.790, -1.070, -1.085, -0.540, -0.935,
-0.790, 1.400, 0.310, -1.150, -0.725, -0.150,
-0.640, 2.040, -1.180, -0.235, -0.070, -0.500,
-0.750, -1.450, -0.235, -1.635, -0.460, -1.855,
-0.925, 0.075, 2.900, -0.820, -0.170, -0.355,
-0.170, 0.595, 0.655, 0.070, 0.330, 0.395, 1.165,
0.750, -0.275, -0.700, 0.880, -0.970, 1.155, 0.600,
-0.075, -1.120, 1.480, -1.255, 0.255, 0.725,
-1.230, -0.760, -0.380, -0.015, -1.005, -1.605,
0.435, -0.695, -1.995, 0.315, -0.385, -0.175,
-0.470, -1.215, 0.780, -1.860, -0.035, -2.700,
-1.055, 1.210, 0.600, -0.710, 0.425, 0.155, -0.525,
-0.565),
CF02 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0.38, 0.06, -0.94,
-0.02, -0.28, -0.78, -0.95, 2.33, 1.43, 1.24, 1.26,
-0.75, -1.5, -2.09, 1.01, -0.05, 2.48, 2.48, 0.46,
0.46, -0.2, -1.11, 0.52, -0.37, 0.58, 0.86, 0.59,
-0.12, -1.33, 1.4, -1.84, -1.4, -0.76, -0.23,
-1.78, -1.43, 1.2, 0.32, 1.87, 0.43, -1.71, -0.54,
-1.25, -1.01, -1.98, 0.52, -1.07, -0.44, -0.24,
-1.31, -2.14, -0.43, 2.47, -0.09, -1.32, -0.3,
-0.99, 1.1, 0.41, 1.01, -0.19, 0.45, -0.07, -1.41,
0.87, 0.68, 1.61, 0.36, -1.06, -0.44, -0.16, 0.72,
-0.69, -0.94, 0.11, 1.25, 0.33, -0.05, 0.87, -0.37,
-0.2, -2.22, 0.26, -0.53, -1.59, 0.04, 0.16, -2.66,
-0.21, -0.92, 0.25, -1.36, -1.62, 0.61, -0.2, 0,
1.14, 0.27, -0.64, 2.29, -0.56, -0.59, 0.44, -0.05,
0.56, 0.71, 0.32, -0.38, 0.01, -1.62, 1.74, 0.27, 0.97,
1.22, -0.21, -0.05, 1.15, 1.49, -0.15, 0.05, -0.87,
-0.3, -0.08, 0.5, 0.84, -1.67, 0.69, 0.47, 0.44,
-1.35, -0.24, -1.5, -1.32, -0.08, 0.76, -0.57,
-0.84, -1.11, 1.94, -0.68),
CF01 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, -0.117, -0.211, -0.333, -0.229, -0.272,
-0.243, -0.148, 0.191, -0.263, -0.239, -0.168,
-0.381, -0.512, -0.338, -0.296, 0.067, 0.104,
-0.254, -0.167, -0.526, -0.096, -0.43, 0.013,
-0.438, -0.297, -0.131, -0.098, -0.046, -0.063,
-0.194, -0.155, -0.645, -0.603, -0.374, -0.214,
-0.165, -0.509, -0.171, -0.442, -0.468, -0.289,
-0.427, -0.519, -0.454, 0.046, -0.275, -0.401,
-0.542, -0.488, -0.52, -0.018, -0.551, -0.444,
-0.254, -0.286, 0.048, -0.03, -0.015, -0.219,
-0.029, 0.059, 0.007, 0.157, 0.141, -0.035, 0.136,
0.526, 0.113, 0.22, -0.022, -0.173, 0.021, -0.027,
0.261, 0.082, -0.266, -0.284, -0.097, 0.097, -0.06,
0.397, 0.315, 0.302, -0.026, 0.268, -0.111, 0.084,
0.14, -0.073, 0.287, 0.061, 0.035, -0.022, -0.091,
-0.22, -0.021, -0.17, -0.184, 0.121, -0.192,
-0.24, -0.283, -0.003, -0.45, -0.138, -0.143,
0.017, -0.245, 0.003, 0.108, 0.015, -0.219, 0.09,
-0.22, -0.004, -0.178, 0.396, 0.204, 0.342, 0.079,
-0.034, -0.122, -0.24, -0.125, 0.382, 0.072, 0.294,
0.577, 0.4, 0.213, 0.359, 0.074, 0.388, 0.253, 0.167),
IND = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
h[N]
thay vì lambda[N]
... và bạn có được phân phối sau của giá trị dự đoán.
h[N]
không phải là giá trị dự đoán: nó sẽ là một tập hợp các bản vẽ từ một tập hợp các phân phối Poisson dự đoán. Do đó, nó kết hợp sự biến đổi trong các tham số Poisson và biến thể từ chính các phân phối Poisson đó. Những gì có liên quan là phân phối sau lambda[N]
.