Bất cứ ai cũng có thể cho tôi biết sự khác biệt giữa việc sử dụng aov()
và lme()
để phân tích dữ liệu theo chiều dọc và cách giải thích kết quả từ hai phương pháp này?
Dưới đây, tôi phân tích các số liệu tương tự sử dụng aov()
và lme()
và có 2 kết quả khác nhau. Với aov()
, tôi đã có một kết quả đáng kể trong thời gian bằng tương tác điều trị, nhưng phù hợp với mô hình hỗn hợp tuyến tính, thời gian bằng tương tác điều trị là không đáng kể.
> UOP.kg.aov <- aov(UOP.kg~time*treat+Error(id), raw3.42)
> summary(UOP.kg.aov)
Error: id
Df Sum Sq Mean Sq F value Pr(>F)
treat 1 0.142 0.1421 0.0377 0.8471
Residuals 39 147.129 3.7725
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
time 1 194.087 194.087 534.3542 < 2e-16 ***
time:treat 1 2.077 2.077 5.7197 0.01792 *
Residuals 162 58.841 0.363
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> UOP.kg.lme <- lme(UOP.kg~time*treat, random=list(id=pdDiag(~time)),
na.action=na.omit, raw3.42)
> summary(UOP.kg.lme)
Linear mixed-effects model fit by REML
Data: raw3.42
AIC BIC logLik
225.7806 248.9037 -105.8903
Random effects:
Formula: ~time | id
Structure: Diagonal
(Intercept) time Residual
StdDev: 0.6817425 0.5121545 0.1780466
Fixed effects: UOP.kg ~ time + treat + time:treat
Value Std.Error DF t-value p-value
(Intercept) 0.5901420 0.1480515 162 3.986059 0.0001
time 0.8623864 0.1104533 162 7.807701 0.0000
treat -0.2144487 0.2174843 39 -0.986042 0.3302
time:treat 0.1979578 0.1622534 162 1.220053 0.2242
Correlation:
(Intr) time treat
time -0.023
treat -0.681 0.016
time:treat 0.016 -0.681 -0.023
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.198315285 -0.384858426 0.002705899 0.404637305 2.049705655
Number of Observations: 205
Number of Groups: 41