Được chứ! Ill làm cho nó rất dễ dàng.
Khi sử dụng tiêu chuẩn và phương sai USUALLY, bạn đang nhìn về phía sau, cố gắng xem điều gì đang xảy ra và sau đó dự đoán tương lai. khi bạn nhìn về phía sau, càng nhiều thử nghiệm thường giúp có được thông tin THÊM. Ngày càng có nhiều thử nghiệm giúp thu hẹp những gì đã xảy ra. và bây giờ bạn xoay tốt hơn xung quanh giá trị trung bình. Std và var chỉ xoay quanh giá trị trung bình để bạn tiến gần hơn và gần hơn với những gì sẽ xảy ra.
Nhị phân thì khác! chúng tôi đã biết những gì đang lên, chúng tôi biết xác suất. Vì vậy, nhìn về phía sau không hữu ích bởi vì, tốt, chúng tôi đã biết xác suất. Ngày càng có nhiều thử nghiệm không giúp chúng ta hiểu rõ hơn và tốt hơn cách mọi thứ xoay quanh giá trị trung bình, nó chỉ giúp chúng ta phân phối rộng hơn và rộng hơn. tăng các thử nghiệm thực sự chỉ cung cấp nhiều chỗ hơn cho phương sai.
Hãy tưởng tượng hai kịch bản: một bạn muốn biết mọi người cao bao nhiêu trong một căn phòng. nhiều số đo hơn = gần hơn với chiều cao trung bình thực trong phòng, bạn rất biết ơn về mỗi phép đo mới.
thứ hai bạn có một đồng tiền. bạn đã biết mức trung bình là gì. 50/50 của tôi có nghĩa là tại thời điểm đó bạn đã hoàn thành. vì vậy hãy giả vờ bạn bắt đầu lật, mỗi lần lật mới chỉ còn nhiều chỗ sai sót. bạn lật 10 lần và bạn nhận được tất cả 10 cái đầu, bạn nói với bạn của bạn, cái quái gì thế! tỷ lệ cược của nó ở đâu, thật là ngu ngốc! tốt, nếu bạn chỉ lật nó một lần, bạn sẽ chỉ có một cơ hội cho một số ngoại lệ điên rồ. nhiều lần lật hơn không thực sự cung cấp cho bạn thêm thông tin, họ chỉ dành nhiều chỗ hơn cho kết quả điên rồ.
0 toán và 0 công thức, hy vọng rằng sẽ giúp.