Bạn đúng rằng đầu ra của R thường chỉ chứa thông tin cần thiết và cần phải tính toán thêm.
N <- 100 # generate some data
X1 <- rnorm(N, 175, 7)
X2 <- rnorm(N, 30, 8)
X3 <- abs(rnorm(N, 60, 30))
Y <- 0.5*X1 - 0.3*X2 - 0.4*X3 + 10 + rnorm(N, 0, 12)
# dichotomize Y and do logistic regression
Yfac <- cut(Y, breaks=c(-Inf, median(Y), Inf), labels=c("lo", "hi"))
glmFit <- glm(Yfac ~ X1 + X2 + X3, family=binomial(link="logit"))
coefficients()
bje x p ( bj)
> exp(coefficients(glmFit))
(Intercept) X1 X2 X3
5.811655e-06 1.098665e+00 9.511785e-01 9.528930e-01
Để có được tỷ lệ cược, chúng ta cần có bảng phân loại chéo của DV nhị phân ban đầu và phân loại dự đoán theo một số ngưỡng xác suất cần được chọn trước tiên. Bạn cũng có thể thấy chức năng ClassLog()
trong gói QuantPsyc
(như chl được đề cập trong một câu hỏi liên quan ).
# predicted probabilities or: predict(glmFit, type="response")
> Yhat <- fitted(glmFit)
> thresh <- 0.5 # threshold for dichotomizing according to predicted probability
> YhatFac <- cut(Yhat, breaks=c(-Inf, thresh, Inf), labels=c("lo", "hi"))
> cTab <- table(Yfac, YhatFac) # contingency table
> addmargins(cTab) # marginal sums
YhatFac
Yfac lo hi Sum
lo 41 9 50
hi 14 36 50
Sum 55 45 100
> sum(diag(cTab)) / sum(cTab) # percentage correct for training data
[1] 0.77
Đối với tỷ lệ cược, bạn có thể sử dụng gói vcd
hoặc thực hiện tính toán thủ công.
> library(vcd) # for oddsratio()
> (OR <- oddsratio(cTab, log=FALSE)) # odds ratio
[1] 11.71429
> (cTab[1, 1] / cTab[1, 2]) / (cTab[2, 1] / cTab[2, 2])
[1] 11.71429
> summary(glmFit) # test for regression parameters ...
# test for the full model against the 0-model
> glm0 <- glm(Yfac ~ 1, family=binomial(link="logit"))
> anova(glm0, glmFit, test="Chisq")
Analysis of Deviance Table
Model 1: Yfac ~ 1
Model 2: Yfac ~ X1 + X2 + X3
Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 99 138.63
2 96 110.58 3 28.045 3.554e-06 ***
cbind( exp(coef(x)), exp(summary(x)$coefficients[,1] - 1.96*summary(x)$coefficients[,2]), exp(summary(x)$coefficients[,1] + 1.96*summary(x)$coefficients[,2]) )
. Ngoài ra còn có phương thức delta: ats.ucla.edu/stat/r/faq/deltamethod.htmlm