Thông tin của Fisher trong mô hình phân cấp


20

Đưa ra mô hình phân cấp sau, và, trong đó là một phân phối bình thường. Có cách nào để có được một biểu thức chính xác cho thông tin Fisher về phân phối biên của cho . Đó là, thông tin Fisher của: Tôi có thể nhận được biểu thức phân phối biên của cho , nhưng phân biệt wrt và sau đó lấy kỳ vọng có vẻ rất khó khăn. Tôi có thiếu một cái gì đó rõ ràng? Bất kỳ trợ giúp sẽ được đánh giá cao.μ ~ L một p l một c e ( 0 , c ) N ( , ) X c p ( x | c ) = p ( x | μ ) p ( μ | c ) d μ X c c

X~N(μ,1),
μ~Lmộtptôimộtce(0,c)
N(,)Xc
p(x|c)= =p(x|μ)p(μ|c)dμ
Xcc

Tôi đã thử bản thân mình, nhưng nó vượt quá khả năng của tôi. Hàm giá trị tuyệt đối làm hỏng mọi thứ! Bạn đang bị mắc kẹt với các phương pháp số.
xác suất

3
@probability Bạn có thể có được một biểu thức cho tích phân chỉ bằng cách chia tích phân thành các vùng và ; không có giá trị tuyệt đối là cần thiết. Nhưng kết quả là một hàm hợp lý lộn xộn của , và các hàm lỗi và do đó không có khả năng tích hợp ở dạng đóng. μ0μ<0xexp(-x2)
whuber

1
@whuber - đó là những gì tôi có nghĩa là "vô vọng". Không phải là tích phân là không thể, nhưng thông tin ngư dân là không thể. Bởi vì bạn phải lấy giá trị mong đợi trên tỷ lệ của hai trong số các loại tích phân nàyX
xác suất

1
Giới hạn dưới của thông tin Fisher trong trường hợp này là . Có thể có được một uppper chặt chẽ hơn ràng buộc vào thông tin Fisher hơn so với không? 1/(1+2c2)1+1/c2
emakalic

Trong khi một giải pháp phân tích sẽ là một thách thức về khả năng di chuyển của con người (bên ngoài một chuyên ngành toán học), liệu có khả năng tiếp nhận một giải pháp tính toán gần đúng không? Người ta có thể thực hiện một mô phỏng ngẫu nhiên và sau đó xem xét các xấp xỉ cho phù hợp.
EngrStudent - Phục hồi Monica

Câu trả lời:


2

Không có biểu thức phân tích dạng đóng cho thông tin Fisher cho mô hình phân cấp mà bạn đưa ra. Trong thực tế, thông tin của Fisher chỉ có thể được tính toán phân tích cho các phân phối gia đình theo cấp số nhân. Đối với các gia đình theo cấp số nhân, khả năng đăng nhập là tuyến tính trong số liệu thống kê đầy đủ và số liệu thống kê đầy đủ có kỳ vọng đã biết. Đối với các bản phân phối khác, khả năng đăng nhập không đơn giản hóa theo cách này. Cả phân phối Laplace lẫn mô hình phân cấp đều là phân phối gia đình theo cấp số nhân, vì vậy một giải pháp phân tích sẽ là không thể.


0

Hai trong số Bình thường và Laplace là từ gia đình hàm mũ. Nếu bạn có thể viết phân phối ở dạng hàm mũ thì ma trận thông tin câu cá là độ dốc thứ hai của trình chuẩn hóa log của họ hàm mũ.


Tôi không nghĩ Laplace hai tham số thông thường là trong gia đình hàm mũ. Nếu tham số vị trí được biết thì nó sẽ thuộc họ hàm mũ, nhưng tôi tin rằng không thể được viết ở dạng gia đình hàm mũ. 12điểm kinh nghiệm(-|x-μ|)
Glen_b -Reinstate Monica
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.