Tôi đã nghe một chút về việc sử dụng các mạng thần kinh để dự báo chuỗi thời gian.
Làm cách nào tôi có thể so sánh, phương pháp nào để dự báo chuỗi thời gian của tôi (dữ liệu bán lẻ hàng ngày) tốt hơn: auto.arima (x), ets (x) hoặc nnetar (x).
Tôi có thể so sánh auto.arima với ets bằng AIC hoặc BIC. Nhưng làm thế nào tôi có thể so sánh chúng với các mạng lưới thần kinh?
Ví dụ:
> dput(x)
c(1774, 1706, 1288, 1276, 2350, 1821, 1712, 1654, 1680, 1451,
1275, 2140, 1747, 1749, 1770, 1797, 1485, 1299, 2330, 1822, 1627,
1847, 1797, 1452, 1328, 2363, 1998, 1864, 2088, 2084, 594, 884,
1968, 1858, 1640, 1823, 1938, 1490, 1312, 2312, 1937, 1617, 1643,
1468, 1381, 1276, 2228, 1756, 1465, 1716, 1601, 1340, 1192, 2231,
1768, 1623, 1444, 1575, 1375, 1267, 2475, 1630, 1505, 1810, 1601,
1123, 1324, 2245, 1844, 1613, 1710, 1546, 1290, 1366, 2427, 1783,
1588, 1505, 1398, 1226, 1321, 2299, 1047, 1735, 1633, 1508, 1323,
1317, 2323, 1826, 1615, 1750, 1572, 1273, 1365, 2373, 2074, 1809,
1889, 1521, 1314, 1512, 2462, 1836, 1750, 1808, 1585, 1387, 1428,
2176, 1732, 1752, 1665, 1425, 1028, 1194, 2159, 1840, 1684, 1711,
1653, 1360, 1422, 2328, 1798, 1723, 1827, 1499, 1289, 1476, 2219,
1824, 1606, 1627, 1459, 1324, 1354, 2150, 1728, 1743, 1697, 1511,
1285, 1426, 2076, 1792, 1519, 1478, 1191, 1122, 1241, 2105, 1818,
1599, 1663, 1319, 1219, 1452, 2091, 1771, 1710, 2000, 1518, 1479,
1586, 1848, 2113, 1648, 1542, 1220, 1299, 1452, 2290, 1944, 1701,
1709, 1462, 1312, 1365, 2326, 1971, 1709, 1700, 1687, 1493, 1523,
2382, 1938, 1658, 1713, 1525, 1413, 1363, 2349, 1923, 1726, 1862,
1686, 1534, 1280, 2233, 1733, 1520, 1537, 1569, 1367, 1129, 2024,
1645, 1510, 1469, 1533, 1281, 1212, 2099, 1769, 1684, 1842, 1654,
1369, 1353, 2415, 1948, 1841, 1928, 1790, 1547, 1465, 2260, 1895,
1700, 1838, 1614, 1528, 1268, 2192, 1705, 1494, 1697, 1588, 1324,
1193, 2049, 1672, 1801, 1487, 1319, 1289, 1302, 2316, 1945, 1771,
2027, 2053, 1639, 1372, 2198, 1692, 1546, 1809, 1787, 1360, 1182,
2157, 1690, 1494, 1731, 1633, 1299, 1291, 2164, 1667, 1535, 1822,
1813, 1510, 1396, 2308, 2110, 2128, 2316, 2249, 1789, 1886, 2463,
2257, 2212, 2608, 2284, 2034, 1996, 2686, 2459, 2340, 2383, 2507,
2304, 2740, 1869, 654, 1068, 1720, 1904, 1666, 1877, 2100, 504,
1482, 1686, 1707, 1306, 1417, 2135, 1787, 1675, 1934, 1931, 1456)
Sử dụng auto.arima:
y=auto.arima(x)
plot(forecast(y,h=30))
points(1:length(x),fitted(y),type="l",col="green")
> summary(y)
Series: x
ARIMA(5,1,5)
Coefficients:
ar1 ar2 ar3 ar4 ar5 ma1 ma2 ma3 ma4 ma5
0.2560 -1.0056 0.0716 -0.5516 -0.4822 -0.9584 1.2627 -1.0745 0.8545 -0.2819
s.e. 0.1014 0.0778 0.1296 0.0859 0.0844 0.1184 0.1322 0.1289 0.1388 0.0903
sigma^2 estimated as 58026: log likelihood=-2191.97
AIC=4405.95 AICc=4406.81 BIC=4447.3
Training set error measures:
ME RMSE MAE MPE MAPE MASE
Training set 1.457729 240.5059 173.9242 -2.312207 11.62531 0.6157512
Sử dụng ets:
fit <- ets(x)
plot(forecast(fit,h=30))
points(1:length(x),fitted(fit),type="l",col="red")
> summary(fit)
ETS(M,N,N)
Call:
ets(y = x)
Smoothing parameters:
alpha = 0.0449
Initial states:
l = 1689.128
sigma: 0.2094
AIC AICc BIC
5570.373 5570.411 5577.897
Training set error measures:
ME RMSE MAE MPE MAPE MASE
Training set 7.842061 359.3611 276.4327 -4.81967 17.98136 0.9786665
Trong trường hợp này auto.arima phù hợp hơn thì tốt hơn.
Hãy thử hát mạng thần kinh:
library(caret)
fit <- nnetar(x)
plot(forecast(fit,h=60))
points(1:length(x),fitted(fit),type="l",col="green")
Từ biểu đồ, tôi có thể thấy, mô hình mạng thần kinh đó khá phù hợp, nhưng làm thế nào tôi có thể so sánh nó với auto.arima / ets? Làm thế nào tôi có thể tính toán AIC?
Một câu hỏi khác là, làm thế nào để thêm khoảng tin cậy cho mạng thần kinh, nếu có thể, giống như nó được thêm tự động cho auto.arima / ets.?