Cấu trúc dữ liệu nào tốt nhất có thể được sử dụng để triển khai cây nhị phân trong Python?
Cấu trúc dữ liệu nào tốt nhất có thể được sử dụng để triển khai cây nhị phân trong Python?
Câu trả lời:
Đây là cách triển khai đệ quy đơn giản của tôi về cây tìm kiếm nhị phân.
#!/usr/bin/python
class Node:
def __init__(self, val):
self.l = None
self.r = None
self.v = val
class Tree:
def __init__(self):
self.root = None
def getRoot(self):
return self.root
def add(self, val):
if self.root is None:
self.root = Node(val)
else:
self._add(val, self.root)
def _add(self, val, node):
if val < node.v:
if node.l is not None:
self._add(val, node.l)
else:
node.l = Node(val)
else:
if node.r is not None:
self._add(val, node.r)
else:
node.r = Node(val)
def find(self, val):
if self.root is not None:
return self._find(val, self.root)
else:
return None
def _find(self, val, node):
if val == node.v:
return node
elif (val < node.v and node.l is not None):
self._find(val, node.l)
elif (val > node.v and node.r is not None):
self._find(val, node.r)
def deleteTree(self):
# garbage collector will do this for us.
self.root = None
def printTree(self):
if self.root is not None:
self._printTree(self.root)
def _printTree(self, node):
if node is not None:
self._printTree(node.l)
print(str(node.v) + ' ')
self._printTree(node.r)
# 3
# 0 4
# 2 8
tree = Tree()
tree.add(3)
tree.add(4)
tree.add(0)
tree.add(8)
tree.add(2)
tree.printTree()
print(tree.find(3).v)
print(tree.find(10))
tree.deleteTree()
tree.printTree()
node is not None
thay vì của bạn (node!=None)
. Ngoài ra, bạn có thể sử dụng __str__
hàm thay vì phương thức printTree.
def _find(self, val, node): if(val == node.v): return node elif(val < node.v and node.l != None): return self._find(val, node.l) elif(val > node.v and node.r != None): return self._find(val, node.r)
left<=root<=right
?
# simple binary tree
# in this implementation, a node is inserted between an existing node and the root
class BinaryTree():
def __init__(self,rootid):
self.left = None
self.right = None
self.rootid = rootid
def getLeftChild(self):
return self.left
def getRightChild(self):
return self.right
def setNodeValue(self,value):
self.rootid = value
def getNodeValue(self):
return self.rootid
def insertRight(self,newNode):
if self.right == None:
self.right = BinaryTree(newNode)
else:
tree = BinaryTree(newNode)
tree.right = self.right
self.right = tree
def insertLeft(self,newNode):
if self.left == None:
self.left = BinaryTree(newNode)
else:
tree = BinaryTree(newNode)
tree.left = self.left
self.left = tree
def printTree(tree):
if tree != None:
printTree(tree.getLeftChild())
print(tree.getNodeValue())
printTree(tree.getRightChild())
# test tree
def testTree():
myTree = BinaryTree("Maud")
myTree.insertLeft("Bob")
myTree.insertRight("Tony")
myTree.insertRight("Steven")
printTree(myTree)
Đọc thêm về nó Tại đây: -Đây là một thực hiện rất đơn giản của cây nhị phân.
Đây là một hướng dẫn hay với các câu hỏi ở giữa
insertLeft
được chia và sẽ tạo ra một vòng lặp vô hạn trên bất kỳ nỗ lực để traverse đệ quy xuống chi nhánh tận cùng bên trái cây nhị phân
[Những gì bạn cần cho các cuộc phỏng vấn] Một lớp Node là cấu trúc dữ liệu đủ để biểu diễn một cây nhị phân.
(Trong khi các câu trả lời khác hầu hết đều đúng, chúng không bắt buộc đối với cây nhị phân: không cần mở rộng lớp đối tượng, không cần phải là BST, không cần nhập deque).
class Node:
def __init__(self, value = None):
self.left = None
self.right = None
self.value = value
Đây là một ví dụ về cây:
n1 = Node(1)
n2 = Node(2)
n3 = Node(3)
n1.left = n2
n1.right = n3
Trong ví dụ này, n1 là gốc của cây có n2, n3 là con của nó.
Triển khai đơn giản BST bằng Python
class TreeNode:
def __init__(self, value):
self.left = None
self.right = None
self.data = value
class Tree:
def __init__(self):
self.root = None
def addNode(self, node, value):
if(node==None):
self.root = TreeNode(value)
else:
if(value<node.data):
if(node.left==None):
node.left = TreeNode(value)
else:
self.addNode(node.left, value)
else:
if(node.right==None):
node.right = TreeNode(value)
else:
self.addNode(node.right, value)
def printInorder(self, node):
if(node!=None):
self.printInorder(node.left)
print(node.data)
self.printInorder(node.right)
def main():
testTree = Tree()
testTree.addNode(testTree.root, 200)
testTree.addNode(testTree.root, 300)
testTree.addNode(testTree.root, 100)
testTree.addNode(testTree.root, 30)
testTree.printInorder(testTree.root)
Một cách rất nhanh để triển khai cây nhị phân bằng cách sử dụng danh sách. Không phải là hiệu quả nhất, cũng như không xử lý các giá trị nil quá tốt. Nhưng nó rất minh bạch (ít nhất là đối với tôi):
def _add(node, v):
new = [v, [], []]
if node:
left, right = node[1:]
if not left:
left.extend(new)
elif not right:
right.extend(new)
else:
_add(left, v)
else:
node.extend(new)
def binary_tree(s):
root = []
for e in s:
_add(root, e)
return root
def traverse(n, order):
if n:
v = n[0]
if order == 'pre':
yield v
for left in traverse(n[1], order):
yield left
if order == 'in':
yield v
for right in traverse(n[2], order):
yield right
if order == 'post':
yield v
Tạo cây từ một cây có thể lặp lại:
>>> tree = binary_tree('A B C D E'.split())
>>> print tree
['A', ['B', ['D', [], []], ['E', [], []]], ['C', [], []]]
Đi ngang qua một cái cây:
>>> list(traverse(tree, 'pre')), list(traverse(tree, 'in')), list(traverse(tree, 'post'))
(['A', 'B', 'D', 'E', 'C'],
['D', 'B', 'E', 'A', 'C'],
['D', 'E', 'B', 'C', 'A'])
Tôi không thể không nhận thấy rằng hầu hết các câu trả lời ở đây đang triển khai Cây tìm kiếm nhị phân. Binary Search Tree! = Cây nhị phân.
Cây tìm kiếm nhị phân có một thuộc tính rất cụ thể: đối với bất kỳ nút X nào, khóa của X lớn hơn khóa của bất kỳ con nào của nút con bên trái của nó và nhỏ hơn khóa của bất kỳ nút nào con phải của nó.
Cây nhị phân không áp đặt hạn chế như vậy. Cây nhị phân chỉ đơn giản là một cấu trúc dữ liệu với một phần tử 'khóa' và hai phần tử con, chẳng hạn như 'trái' và 'phải'.
Cây là một trường hợp tổng quát hơn của Cây nhị phân trong đó mỗi nút có thể có một số nút con tùy ý. Thông thường, mỗi nút có một phần tử 'con' có kiểu danh sách / mảng.
Bây giờ, để trả lời câu hỏi của OP, tôi đang bao gồm việc triển khai đầy đủ Cây nhị phân trong Python. Cấu trúc dữ liệu cơ bản lưu trữ mỗi BinaryTreeNode là một từ điển, do nó cung cấp các tra cứu O (1) tối ưu. Tôi cũng đã triển khai các đường dẫn theo chiều sâu và chiều rộng đầu tiên. Đây là những hoạt động rất phổ biến được thực hiện trên cây.
from collections import deque
class BinaryTreeNode:
def __init__(self, key, left=None, right=None):
self.key = key
self.left = left
self.right = right
def __repr__(self):
return "%s l: (%s) r: (%s)" % (self.key, self.left, self.right)
def __eq__(self, other):
if self.key == other.key and \
self.right == other.right and \
self.left == other.left:
return True
else:
return False
class BinaryTree:
def __init__(self, root_key=None):
# maps from BinaryTreeNode key to BinaryTreeNode instance.
# Thus, BinaryTreeNode keys must be unique.
self.nodes = {}
if root_key is not None:
# create a root BinaryTreeNode
self.root = BinaryTreeNode(root_key)
self.nodes[root_key] = self.root
def add(self, key, left_key=None, right_key=None):
if key not in self.nodes:
# BinaryTreeNode with given key does not exist, create it
self.nodes[key] = BinaryTreeNode(key)
# invariant: self.nodes[key] exists
# handle left child
if left_key is None:
self.nodes[key].left = None
else:
if left_key not in self.nodes:
self.nodes[left_key] = BinaryTreeNode(left_key)
# invariant: self.nodes[left_key] exists
self.nodes[key].left = self.nodes[left_key]
# handle right child
if right_key == None:
self.nodes[key].right = None
else:
if right_key not in self.nodes:
self.nodes[right_key] = BinaryTreeNode(right_key)
# invariant: self.nodes[right_key] exists
self.nodes[key].right = self.nodes[right_key]
def remove(self, key):
if key not in self.nodes:
raise ValueError('%s not in tree' % key)
# remove key from the list of nodes
del self.nodes[key]
# if node removed is left/right child, update parent node
for k in self.nodes:
if self.nodes[k].left and self.nodes[k].left.key == key:
self.nodes[k].left = None
if self.nodes[k].right and self.nodes[k].right.key == key:
self.nodes[k].right = None
return True
def _height(self, node):
if node is None:
return 0
else:
return 1 + max(self._height(node.left), self._height(node.right))
def height(self):
return self._height(self.root)
def size(self):
return len(self.nodes)
def __repr__(self):
return str(self.traverse_inorder(self.root))
def bfs(self, node):
if not node or node not in self.nodes:
return
reachable = []
q = deque()
# add starting node to queue
q.append(node)
while len(q):
visit = q.popleft()
# add currently visited BinaryTreeNode to list
reachable.append(visit)
# add left/right children as needed
if visit.left:
q.append(visit.left)
if visit.right:
q.append(visit.right)
return reachable
# visit left child, root, then right child
def traverse_inorder(self, node, reachable=None):
if not node or node.key not in self.nodes:
return
if reachable is None:
reachable = []
self.traverse_inorder(node.left, reachable)
reachable.append(node.key)
self.traverse_inorder(node.right, reachable)
return reachable
# visit left and right children, then root
# root of tree is always last to be visited
def traverse_postorder(self, node, reachable=None):
if not node or node.key not in self.nodes:
return
if reachable is None:
reachable = []
self.traverse_postorder(node.left, reachable)
self.traverse_postorder(node.right, reachable)
reachable.append(node.key)
return reachable
# visit root, left, then right children
# root is always visited first
def traverse_preorder(self, node, reachable=None):
if not node or node.key not in self.nodes:
return
if reachable is None:
reachable = []
reachable.append(node.key)
self.traverse_preorder(node.left, reachable)
self.traverse_preorder(node.right, reachable)
return reachable
bạn không cần phải có hai lớp học
class Tree:
val = None
left = None
right = None
def __init__(self, val):
self.val = val
def insert(self, val):
if self.val is not None:
if val < self.val:
if self.left is not None:
self.left.insert(val)
else:
self.left = Tree(val)
elif val > self.val:
if self.right is not None:
self.right.insert(val)
else:
self.right = Tree(val)
else:
return
else:
self.val = val
print("new node added")
def showTree(self):
if self.left is not None:
self.left.showTree()
print(self.val, end = ' ')
if self.right is not None:
self.right.showTree()
Thêm một chút "Pythonic"?
class Node:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def __repr__(self):
return str(self.value)
class BST:
def __init__(self):
self.root = None
def __repr__(self):
self.sorted = []
self.get_inorder(self.root)
return str(self.sorted)
def get_inorder(self, node):
if node:
self.get_inorder(node.left)
self.sorted.append(str(node.value))
self.get_inorder(node.right)
def add(self, value):
if not self.root:
self.root = Node(value)
else:
self._add(self.root, value)
def _add(self, node, value):
if value <= node.value:
if node.left:
self._add(node.left, value)
else:
node.left = Node(value)
else:
if node.right:
self._add(node.right, value)
else:
node.right = Node(value)
from random import randint
bst = BST()
for i in range(100):
bst.add(randint(1, 1000))
print (bst)
#!/usr/bin/python
class BinaryTree:
def __init__(self, left, right, data):
self.left = left
self.right = right
self.data = data
def pre_order_traversal(root):
print(root.data, end=' ')
if root.left != None:
pre_order_traversal(root.left)
if root.right != None:
pre_order_traversal(root.right)
def in_order_traversal(root):
if root.left != None:
in_order_traversal(root.left)
print(root.data, end=' ')
if root.right != None:
in_order_traversal(root.right)
def post_order_traversal(root):
if root.left != None:
post_order_traversal(root.left)
if root.right != None:
post_order_traversal(root.right)
print(root.data, end=' ')
Một Node
lớp dựa trên các nút được kết nối là một cách tiếp cận tiêu chuẩn. Những điều này có thể khó hình dung.
Được thúc đẩy từ một bài luận về Mẫu Python - Thực hiện Đồ thị , hãy xem xét một từ điển đơn giản:
Được
Cây nhị phân
a
/ \
b c
/ \ \
d e f
Mã
Tạo từ điển các nút duy nhất :
tree = {
"a": ["b", "c"],
"b": ["d", "e"],
"c": [None, "f"],
"d": [None, None],
"e": [None, None],
"f": [None, None],
}
Chi tiết
find_all_paths()
).Các hàm dựa trên cây thường bao gồm các hoạt động phổ biến sau:
Hãy thử thực hiện tất cả các thao tác này. Ở đây chúng tôi chứng minh một trong những chức năng này - một trình duyệt BFS:
Thí dụ
import collections as ct
def traverse(tree):
"""Yield nodes from a tree via BFS."""
q = ct.deque() # 1
root = next(iter(tree)) # 2
q.append(root)
while q:
node = q.popleft()
children = filter(None, tree.get(node))
for n in children: # 3
q.append(n)
yield node
list(traverse(tree))
# ['a', 'b', 'c', 'd', 'e', 'f']
Đây là thuật toán tìm kiếm theo chiều rộng (thứ tự cấp độ) được áp dụng cho một lệnh của các nút và con.
deque
, nhưng a queue
hoặc a list
hoạt động (cái sau không hiệu quả).Xem thêm hướng dẫn chuyên sâu về cây này.
Insight
Điều tuyệt vời về đường truyền nói chung, chúng ta có thể dễ dàng thay đổi cách tiếp cận lặp đi lặp lại sau này đối với tìm kiếm theo chiều sâu (DFS) bằng cách chỉ cần thay thế hàng đợi bằng một ngăn xếp (hay còn gọi là Hàng đợi LIFO). Điều này đơn giản có nghĩa là chúng tôi xếp hàng từ cùng một phía mà chúng tôi xếp hàng. DFS cho phép chúng tôi tìm kiếm từng nhánh.
Làm sao? Vì chúng ta đang sử dụng a deque
, chúng ta có thể mô phỏng một ngăn xếp bằng cách thay đổi node = q.popleft()
thành node = q.pop()
(phải). Kết quả là một quyền tối huệ, DFS đặt hàng trước : ['a', 'c', 'f', 'b', 'e', 'd']
.
import random
class TreeNode:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.p = None
class BinaryTree:
def __init__(self):
self.root = None
def length(self):
return self.size
def inorder(self, node):
if node == None:
return None
else:
self.inorder(node.left)
print node.key,
self.inorder(node.right)
def search(self, k):
node = self.root
while node != None:
if node.key == k:
return node
if node.key > k:
node = node.left
else:
node = node.right
return None
def minimum(self, node):
x = None
while node.left != None:
x = node.left
node = node.left
return x
def maximum(self, node):
x = None
while node.right != None:
x = node.right
node = node.right
return x
def successor(self, node):
parent = None
if node.right != None:
return self.minimum(node.right)
parent = node.p
while parent != None and node == parent.right:
node = parent
parent = parent.p
return parent
def predecessor(self, node):
parent = None
if node.left != None:
return self.maximum(node.left)
parent = node.p
while parent != None and node == parent.left:
node = parent
parent = parent.p
return parent
def insert(self, k):
t = TreeNode(k)
parent = None
node = self.root
while node != None:
parent = node
if node.key > t.key:
node = node.left
else:
node = node.right
t.p = parent
if parent == None:
self.root = t
elif t.key < parent.key:
parent.left = t
else:
parent.right = t
return t
def delete(self, node):
if node.left == None:
self.transplant(node, node.right)
elif node.right == None:
self.transplant(node, node.left)
else:
succ = self.minimum(node.right)
if succ.p != node:
self.transplant(succ, succ.right)
succ.right = node.right
succ.right.p = succ
self.transplant(node, succ)
succ.left = node.left
succ.left.p = succ
def transplant(self, node, newnode):
if node.p == None:
self.root = newnode
elif node == node.p.left:
node.p.left = newnode
else:
node.p.right = newnode
if newnode != None:
newnode.p = node.p
Việc triển khai này hỗ trợ các thao tác chèn, tìm và xóa mà không phá hủy cấu trúc của cây. Đây không phải là cây banlanced.
# Class for construct the nodes of the tree. (Subtrees)
class Node:
def __init__(self, key, parent_node = None):
self.left = None
self.right = None
self.key = key
if parent_node == None:
self.parent = self
else:
self.parent = parent_node
# Class with the structure of the tree.
# This Tree is not balanced.
class Tree:
def __init__(self):
self.root = None
# Insert a single element
def insert(self, x):
if(self.root == None):
self.root = Node(x)
else:
self._insert(x, self.root)
def _insert(self, x, node):
if(x < node.key):
if(node.left == None):
node.left = Node(x, node)
else:
self._insert(x, node.left)
else:
if(node.right == None):
node.right = Node(x, node)
else:
self._insert(x, node.right)
# Given a element, return a node in the tree with key x.
def find(self, x):
if(self.root == None):
return None
else:
return self._find(x, self.root)
def _find(self, x, node):
if(x == node.key):
return node
elif(x < node.key):
if(node.left == None):
return None
else:
return self._find(x, node.left)
elif(x > node.key):
if(node.right == None):
return None
else:
return self._find(x, node.right)
# Given a node, return the node in the tree with the next largest element.
def next(self, node):
if node.right != None:
return self._left_descendant(node.right)
else:
return self._right_ancestor(node)
def _left_descendant(self, node):
if node.left == None:
return node
else:
return self._left_descendant(node.left)
def _right_ancestor(self, node):
if node.key <= node.parent.key:
return node.parent
else:
return self._right_ancestor(node.parent)
# Delete an element of the tree
def delete(self, x):
node = self.find(x)
if node == None:
print(x, "isn't in the tree")
else:
if node.right == None:
if node.left == None:
if node.key < node.parent.key:
node.parent.left = None
del node # Clean garbage
else:
node.parent.right = None
del Node # Clean garbage
else:
node.key = node.left.key
node.left = None
else:
x = self.next(node)
node.key = x.key
x = None
# tests
t = Tree()
t.insert(5)
t.insert(8)
t.insert(3)
t.insert(4)
t.insert(6)
t.insert(2)
t.delete(8)
t.delete(5)
t.insert(9)
t.insert(1)
t.delete(2)
t.delete(100)
# Remember: Find method return the node object.
# To return a number use t.find(nº).key
# But it will cause an error if the number is not in the tree.
print(t.find(5))
print(t.find(8))
print(t.find(4))
print(t.find(6))
print(t.find(9))
Tôi biết nhiều giải pháp tốt đã được đăng nhưng tôi thường có một cách tiếp cận khác cho cây nhị phân: sử dụng một số lớp Node và triển khai trực tiếp nó dễ đọc hơn nhưng khi bạn có nhiều nút, nó có thể trở nên rất tham lam về bộ nhớ, vì vậy tôi đề xuất thêm một lớp phức tạp và lưu trữ các nút trong danh sách python, sau đó mô phỏng hành vi cây chỉ sử dụng danh sách.
Bạn vẫn có thể định nghĩa một lớp Node để cuối cùng đại diện cho các nút trong cây khi cần thiết, nhưng việc giữ chúng ở dạng đơn giản [giá trị, trái, phải] trong danh sách sẽ sử dụng một nửa bộ nhớ hoặc ít hơn!
Đây là một ví dụ nhanh về lớp Cây tìm kiếm nhị phân lưu trữ các nút trong một mảng. Nó cung cấp các fonctions cơ bản như thêm, bớt, tìm ...
"""
Basic Binary Search Tree class without recursion...
"""
__author__ = "@fbparis"
class Node(object):
__slots__ = "value", "parent", "left", "right"
def __init__(self, value, parent=None, left=None, right=None):
self.value = value
self.parent = parent
self.left = left
self.right = right
def __repr__(self):
return "<%s object at %s: parent=%s, left=%s, right=%s, value=%s>" % (self.__class__.__name__, hex(id(self)), self.parent, self.left, self.right, self.value)
class BinarySearchTree(object):
__slots__ = "_tree"
def __init__(self, *args):
self._tree = []
if args:
for x in args[0]:
self.add(x)
def __len__(self):
return len(self._tree)
def __repr__(self):
return "<%s object at %s with %d nodes>" % (self.__class__.__name__, hex(id(self)), len(self))
def __str__(self, nodes=None, level=0):
ret = ""
if nodes is None:
if len(self):
nodes = [0]
else:
nodes = []
for node in nodes:
if node is None:
continue
ret += "-" * level + " %s\n" % self._tree[node][0]
ret += self.__str__(self._tree[node][2:4], level + 1)
if level == 0:
ret = ret.strip()
return ret
def __contains__(self, value):
if len(self):
node_index = 0
while self._tree[node_index][0] != value:
if value < self._tree[node_index][0]:
node_index = self._tree[node_index][2]
else:
node_index = self._tree[node_index][3]
if node_index is None:
return False
return True
return False
def __eq__(self, other):
return self._tree == other._tree
def add(self, value):
if len(self):
node_index = 0
while self._tree[node_index][0] != value:
if value < self._tree[node_index][0]:
b = self._tree[node_index][2]
k = 2
else:
b = self._tree[node_index][3]
k = 3
if b is None:
self._tree[node_index][k] = len(self)
self._tree.append([value, node_index, None, None])
break
node_index = b
else:
self._tree.append([value, None, None, None])
def remove(self, value):
if len(self):
node_index = 0
while self._tree[node_index][0] != value:
if value < self._tree[node_index][0]:
node_index = self._tree[node_index][2]
else:
node_index = self._tree[node_index][3]
if node_index is None:
raise KeyError
if self._tree[node_index][2] is not None:
b, d = 2, 3
elif self._tree[node_index][3] is not None:
b, d = 3, 2
else:
i = node_index
b = None
if b is not None:
i = self._tree[node_index][b]
while self._tree[i][d] is not None:
i = self._tree[i][d]
p = self._tree[i][1]
b = self._tree[i][b]
if p == node_index:
self._tree[p][5-d] = b
else:
self._tree[p][d] = b
if b is not None:
self._tree[b][1] = p
self._tree[node_index][0] = self._tree[i][0]
else:
p = self._tree[i][1]
if p is not None:
if self._tree[p][2] == i:
self._tree[p][2] = None
else:
self._tree[p][3] = None
last = self._tree.pop()
n = len(self)
if i < n:
self._tree[i] = last[:]
if last[2] is not None:
self._tree[last[2]][1] = i
if last[3] is not None:
self._tree[last[3]][1] = i
if self._tree[last[1]][2] == n:
self._tree[last[1]][2] = i
else:
self._tree[last[1]][3] = i
else:
raise KeyError
def find(self, value):
if len(self):
node_index = 0
while self._tree[node_index][0] != value:
if value < self._tree[node_index][0]:
node_index = self._tree[node_index][2]
else:
node_index = self._tree[node_index][3]
if node_index is None:
return None
return Node(*self._tree[node_index])
return None
Tôi đã thêm thuộc tính cha để bạn có thể xóa bất kỳ nút nào và duy trì cấu trúc BST.
Xin lỗi vì tính dễ đọc, đặc biệt là đối với chức năng "loại bỏ". Về cơ bản, khi một nút bị xóa, chúng ta bật mảng cây và thay thế nó bằng phần tử cuối cùng (trừ trường hợp chúng ta muốn loại bỏ nút cuối cùng). Để duy trì cấu trúc BST, nút bị loại bỏ được thay thế bằng nút tối đa của nút con bên trái hoặc nút nhỏ nhất của nút con bên phải và một số thao tác phải được thực hiện để giữ các chỉ mục hợp lệ nhưng nó đủ nhanh.
Tôi đã sử dụng kỹ thuật này cho những thứ nâng cao hơn để xây dựng một số từ điển từ lớn với bộ ba cơ số bên trong và tôi có thể chia mức tiêu thụ bộ nhớ cho 7-8 (bạn có thể xem ví dụ ở đây: https://gist.github.com/fbparis / b3ddd5673b603b42c880974b23db7cda )
Cách triển khai tốt cây tìm kiếm nhị phân , được lấy từ đây :
'''
A binary search Tree
'''
from __future__ import print_function
class Node:
def __init__(self, label, parent):
self.label = label
self.left = None
self.right = None
#Added in order to delete a node easier
self.parent = parent
def getLabel(self):
return self.label
def setLabel(self, label):
self.label = label
def getLeft(self):
return self.left
def setLeft(self, left):
self.left = left
def getRight(self):
return self.right
def setRight(self, right):
self.right = right
def getParent(self):
return self.parent
def setParent(self, parent):
self.parent = parent
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, label):
# Create a new Node
new_node = Node(label, None)
# If Tree is empty
if self.empty():
self.root = new_node
else:
#If Tree is not empty
curr_node = self.root
#While we don't get to a leaf
while curr_node is not None:
#We keep reference of the parent node
parent_node = curr_node
#If node label is less than current node
if new_node.getLabel() < curr_node.getLabel():
#We go left
curr_node = curr_node.getLeft()
else:
#Else we go right
curr_node = curr_node.getRight()
#We insert the new node in a leaf
if new_node.getLabel() < parent_node.getLabel():
parent_node.setLeft(new_node)
else:
parent_node.setRight(new_node)
#Set parent to the new node
new_node.setParent(parent_node)
def delete(self, label):
if (not self.empty()):
#Look for the node with that label
node = self.getNode(label)
#If the node exists
if(node is not None):
#If it has no children
if(node.getLeft() is None and node.getRight() is None):
self.__reassignNodes(node, None)
node = None
#Has only right children
elif(node.getLeft() is None and node.getRight() is not None):
self.__reassignNodes(node, node.getRight())
#Has only left children
elif(node.getLeft() is not None and node.getRight() is None):
self.__reassignNodes(node, node.getLeft())
#Has two children
else:
#Gets the max value of the left branch
tmpNode = self.getMax(node.getLeft())
#Deletes the tmpNode
self.delete(tmpNode.getLabel())
#Assigns the value to the node to delete and keesp tree structure
node.setLabel(tmpNode.getLabel())
def getNode(self, label):
curr_node = None
#If the tree is not empty
if(not self.empty()):
#Get tree root
curr_node = self.getRoot()
#While we don't find the node we look for
#I am using lazy evaluation here to avoid NoneType Attribute error
while curr_node is not None and curr_node.getLabel() is not label:
#If node label is less than current node
if label < curr_node.getLabel():
#We go left
curr_node = curr_node.getLeft()
else:
#Else we go right
curr_node = curr_node.getRight()
return curr_node
def getMax(self, root = None):
if(root is not None):
curr_node = root
else:
#We go deep on the right branch
curr_node = self.getRoot()
if(not self.empty()):
while(curr_node.getRight() is not None):
curr_node = curr_node.getRight()
return curr_node
def getMin(self, root = None):
if(root is not None):
curr_node = root
else:
#We go deep on the left branch
curr_node = self.getRoot()
if(not self.empty()):
curr_node = self.getRoot()
while(curr_node.getLeft() is not None):
curr_node = curr_node.getLeft()
return curr_node
def empty(self):
if self.root is None:
return True
return False
def __InOrderTraversal(self, curr_node):
nodeList = []
if curr_node is not None:
nodeList.insert(0, curr_node)
nodeList = nodeList + self.__InOrderTraversal(curr_node.getLeft())
nodeList = nodeList + self.__InOrderTraversal(curr_node.getRight())
return nodeList
def getRoot(self):
return self.root
def __isRightChildren(self, node):
if(node == node.getParent().getRight()):
return True
return False
def __reassignNodes(self, node, newChildren):
if(newChildren is not None):
newChildren.setParent(node.getParent())
if(node.getParent() is not None):
#If it is the Right Children
if(self.__isRightChildren(node)):
node.getParent().setRight(newChildren)
else:
#Else it is the left children
node.getParent().setLeft(newChildren)
#This function traversal the tree. By default it returns an
#In order traversal list. You can pass a function to traversal
#The tree as needed by client code
def traversalTree(self, traversalFunction = None, root = None):
if(traversalFunction is None):
#Returns a list of nodes in preOrder by default
return self.__InOrderTraversal(self.root)
else:
#Returns a list of nodes in the order that the users wants to
return traversalFunction(self.root)
#Returns an string of all the nodes labels in the list
#In Order Traversal
def __str__(self):
list = self.__InOrderTraversal(self.root)
str = ""
for x in list:
str = str + " " + x.getLabel().__str__()
return str
def InPreOrder(curr_node):
nodeList = []
if curr_node is not None:
nodeList = nodeList + InPreOrder(curr_node.getLeft())
nodeList.insert(0, curr_node.getLabel())
nodeList = nodeList + InPreOrder(curr_node.getRight())
return nodeList
def testBinarySearchTree():
r'''
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
'''
r'''
Example After Deletion
7
/ \
1 4
'''
t = BinarySearchTree()
t.insert(8)
t.insert(3)
t.insert(6)
t.insert(1)
t.insert(10)
t.insert(14)
t.insert(13)
t.insert(4)
t.insert(7)
#Prints all the elements of the list in order traversal
print(t.__str__())
if(t.getNode(6) is not None):
print("The label 6 exists")
else:
print("The label 6 doesn't exist")
if(t.getNode(-1) is not None):
print("The label -1 exists")
else:
print("The label -1 doesn't exist")
if(not t.empty()):
print(("Max Value: ", t.getMax().getLabel()))
print(("Min Value: ", t.getMin().getLabel()))
t.delete(13)
t.delete(10)
t.delete(8)
t.delete(3)
t.delete(6)
t.delete(14)
#Gets all the elements of the tree In pre order
#And it prints them
list = t.traversalTree(InPreOrder, t.root)
for x in list:
print(x)
if __name__ == "__main__":
testBinarySearchTree()
Tôi muốn hiển thị một biến thể của phương thức @ apadana, sẽ hữu ích hơn khi có một số lượng đáng kể các nút:
'''
Suppose we have the following tree
10
/ \
11 9
/ \ / \
7 12 15 8
'''
# Step 1 - Create nodes - Use a list instead of defining each node separately
nlist = [10,11,7,9,15,8,12]; n = []
for i in range(len(nlist)): n.append(Node(nlist[i]))
# Step 2 - Set each node position
n[0].left = n[1]
n[1].left = n[2]
n[0].right = n[3]
n[3].left = n[4]
n[3].right = n[5]
n[1].right = n[6]
class Node:
"""
single Node for tree
"""
def __init__(self, data):
self.data = data
self.right = None
self.left = None
class binaryTree:
"""
binary tree implementation
"""
def __init__(self):
self.root = None
def push(self, element, node=None):
if node is None:
node = self.root
if self.root is None:
self.root = Node(element)
else:
if element < node.data:
if node.left is not None:
self.push(element, node.left)
else:
node.left = Node(element)
else:
if node.right is not None:
self.push(element, node.right)
else:
node.right = Node(element)
def __str__(self):
self.printInorder(self.root)
return "\n"
def printInorder(self, node):
"""
print tree in inorder
"""
if node is not None:
self.printInorder(node.left)
print(node.data)
self.printInorder(node.right)
def main():
"""
Main code and logic comes here
"""
tree = binaryTree()
tree.push(5)
tree.push(3)
tree.push(1)
tree.push(3)
tree.push(0)
tree.push(2)
tree.push(9)
tree.push(10)
print(tree)
if __name__ == "__main__":
main()
Cây nhị phân trong Python
class Tree(object):
def __init__(self):
self.data=None
self.left=None
self.right=None
def insert(self, x, root):
if root==None:
t=node(x)
t.data=x
t.right=None
t.left=None
root=t
return root
elif x<root.data:
root.left=self.insert(x, root.left)
else:
root.right=self.insert(x, root.right)
return root
def printTree(self, t):
if t==None:
return
self.printTree(t.left)
print t.data
self.printTree(t.right)
class node(object):
def __init__(self, x):
self.x=x
bt=Tree()
root=None
n=int(raw_input())
a=[]
for i in range(n):
a.append(int(raw_input()))
for i in range(n):
root=bt.insert(a[i], root)
bt.printTree(root)
Đây là một giải pháp đơn giản có thể được sử dụng để xây dựng cây nhị phân bằng cách sử dụng phương pháp đệ quy để hiển thị cây theo thứ tự duyệt đã được sử dụng trong đoạn mã dưới đây.
class Node(object):
def __init__(self):
self.left = None
self.right = None
self.value = None
@property
def get_value(self):
return self.value
@property
def get_left(self):
return self.left
@property
def get_right(self):
return self.right
@get_left.setter
def set_left(self, left_node):
self.left = left_node
@get_value.setter
def set_value(self, value):
self.value = value
@get_right.setter
def set_right(self, right_node):
self.right = right_node
def create_tree(self):
_node = Node() #creating new node.
_x = input("Enter the node data(-1 for null)")
if(_x == str(-1)): #for defining no child.
return None
_node.set_value = _x #setting the value of the node.
print("Enter the left child of {}".format(_x))
_node.set_left = self.create_tree() #setting the left subtree
print("Enter the right child of {}".format(_x))
_node.set_right = self.create_tree() #setting the right subtree.
return _node
def pre_order(self, root):
if root is not None:
print(root.get_value)
self.pre_order(root.get_left)
self.pre_order(root.get_right)
if __name__ == '__main__':
node = Node()
root_node = node.create_tree()
node.pre_order(root_node)
Mã lấy từ: Cây nhị phân trong Python