Các nhanh nhất phương pháp tôi đã tìm thấy cho đến nay được mở rộng DataFrame với .iloc
và gán lại phẳng cột mục tiêu.
Với đầu vào thông thường (sao chép một chút):
df = (pd.DataFrame({'name': ['A.J. Price'] * 3,
'opponent': ['76ers', 'blazers', 'bobcats'],
'nearest_neighbors': [['Zach LaVine', 'Jeremy Lin', 'Nate Robinson', 'Isaia']] * 3})
.set_index(['name', 'opponent']))
df = pd.concat([df]*10)
df
Out[3]:
nearest_neighbors
name opponent
A.J. Price 76ers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
blazers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
bobcats [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
76ers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
blazers [Zach LaVine, Jeremy Lin, Nate Robinson, Isaia]
...
Đưa ra các lựa chọn thay thế được đề xuất sau:
col_target = 'nearest_neighbors'
def extend_iloc():
# Flatten columns of lists
col_flat = [item for sublist in df[col_target] for item in sublist]
# Row numbers to repeat
lens = df[col_target].apply(len)
vals = range(df.shape[0])
ilocations = np.repeat(vals, lens)
# Replicate rows and add flattened column of lists
cols = [i for i,c in enumerate(df.columns) if c != col_target]
new_df = df.iloc[ilocations, cols].copy()
new_df[col_target] = col_flat
return new_df
def melt():
return (pd.melt(df[col_target].apply(pd.Series).reset_index(),
id_vars=['name', 'opponent'],
value_name=col_target)
.set_index(['name', 'opponent'])
.drop('variable', axis=1)
.dropna()
.sort_index())
def stack_unstack():
return (df[col_target].apply(pd.Series)
.stack()
.reset_index(level=2, drop=True)
.to_frame(col_target))
Tôi thấy đó extend_iloc()
là nhanh nhất :
%timeit extend_iloc()
3.11 ms ± 544 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit melt()
22.5 ms ± 1.25 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit stack_unstack()
11.5 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)